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ABSTRACT 

The cerebellar circuitry belonging to the Central Nervous System (CNS) consists of a set of neurons 

and synapses that present rich dynamical properties. In the field of traditional artificial neural network 

(ANN), most approaches are based on very simplistic connectivity rules between very simplified neuron 

models which produce an output in each propagation cycle (the time domain is not introduced in the 

simulation). Nevertheless, if we want to study computational neuroscience and consider biological 

nervous systems, we need a higher degree of detail. For instance the cerebellum does not consist only of 

very complex neurons in a sophisticated network but also this cerebellum network deals with non-

continuous signals called spikes. Hence, it is clear that in order to understand the foundations of 

cerebellar processing (from a computational neuroscience perspective); it is mandatory to work with a 

realistic cerebellar spiking neural network. 

In the case of the Cerebellum, its functionality has been studied for decades and it is well accepted that 

it plays a fundamental role in human motor control loops by means of regulating movement and also 

cognitive processes. The cerebellum is able to dynamically regulate its activity (it can present a highly 

non-linear behavior) and it is also able to tune its synaptic connections by distributed and heterogeneous 

forms of synaptic plasticity. Along this thesis, we have focused on studying the cerebellar functionality 

and how it is related with its structure (network topology), neuron models and synaptic adaptation 

mechanisms. To that aim, we have developed a biologically inspired cerebellar like network (based on 

neurophysiological findings) embedded into a robotic system in order to evaluate circuit functioning 

under closed-loop conditions. According to the embodiment concept, we have developed a complete 

framework that allows researchers to contrast different experimental cerebellar hypotheses. 

This work was partly supported by the Spanish Subprogram FPU 2007 (MICINN), and the EU projects 

SENSOPAC (IST-028056), and REALNET (IST-270434). 
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RESUMEN 

Como es bien sabido, la circuitería cerebelar perteneciente al sistema nervioso central está conformada 

por una serie de neuronas y sinapsis que presentan  un conjunto de  propiedades dinámicas 

tremendamente ricas. Si se echa un vistazo a lo largo de la literatura concerniente a redes neuronales 

artificiales tradicionales, es fácil comprobar que la mayoría de ellas están basadas en reglas de 

conectividad de algún modo simplistas entre modelos de neurona simplificados, los cuales son 

evaluados en ciclos de propagación (la dimensión de tiempo no está contemplada en la simulación). Sin 

embargo, lo que encontramos en el cerebelo no sólo se corresponde con neuronas de extraordinaria 

complejidad dinámica insertas en una sofisticada red, sino también se puede constatar un tratamiento 

por parte de dicha red cerebelar de señales no continuas, señales llamadas impulsos (impulsos eléctricos) 

o en su forma anglosajona “spikes”. Por lo tanto, resulta evidente que, con el fin de entender los 

fundamentos de la circuitería cerebelar, resulta imprescindible implementar una red neuronal  cerebelar 

realista donde las características funcionales del cerebelo se vean reflejadas. 

Por otro lado, la comunidad científica asume que el cerebelo juega un rol fundamental en los circuitos 

de control motor humano mediante la regulación del movimiento, en los procesos cognitivos y en el 

control de emociones. El cerebelo es capaz de regular de forma dinámica su actividad (que puede 

presentar un comportamiento fuertemente no lineal) siendo capaz también  de modificar sus 

conexiones sinápticas mediante diferentes formas de plasticidad sináptica distribuida. A lo largo de esta 

tesis, hemos tratado de arrojar algo de luz sobre la funcionalidad (no solo estructural) del cerebelo, un  

campo que, a día de hoy, aún sigue siendo poco conocido. Con este objetivo, hemos construido una red 

neuronal cerebelar bio-inspirada (haciendo uso de hallazgos neurofisiológicos) la cual se integra en un 

sistema robótico con el fin de evaluar su funcionamiento bajo condiciones de control en bucle cerrado, 

desarrollándose  para ello un completo entorno de trabajo que permite a distintos tipo de investigadores 

contrastar diferentes hipótesis cerebelares experimentales. 

Este trabajo ha sido parcialmente cofinanciado tanto por el programa español FPU 2007 (MICINN), 

como por los proyectos europeos SENSOPAC (IST-028056) y REALNET (IST-270434). 

  



 

viii 

 

 



 

ix 

 

ACKNOWLEDGEMENTS 

I would like to show my gratitude to my supervisor, Prof. Eduardo Ros, who shared with me a lot of his 

expertise and research insight. He quickly became for me in the paradigm of a successful researcher to 

follow. I would also like to thank Dr. Richard Carrillo, whose sharp intelligence has often served to give 

me a sense of direction during my PhD studies. 

 

It has been an honor for me to work shoulder to shoulder with my college and also friend Jesús 

Garrido. There is no doubt that thanks to his hard work this thesis has come to light. His friendship has 

made Science more human in my eyes. 

I thank my colleagues from CIE/CITIC Jarno Ralli, Mauricio Vanegas, Silvia Tolu, Juanma Gomez, 

Francisco Barranco, Jose Miguel Urquiza, Matteo Tomassi, Juan Pedro Cobos, Sara Granados, Luca 

Leonardo Bologna, Jean Baptiste Passot, Karl Pauwels, Leonardo Rubio, Juanlu Jiménez, Jose Luís 

Gutiérrez, whom I have shared much more than just a workplace. Moreover I would like to thank my 

friends in college from my lovely Córdoba, Mario, Paco y Rafa whom I have spent almost an entire life 

sharing experiences. 

I wish to thank my brother and sister for providing a loving environment for me. 

I owe my loving thanks to my girlfriend Beatriz, without her optimism, encouragement, understanding 

and common sense, it would have been impossible for me to finish this thesis. She brought me some 

light to the darkness. 

 

Last but not least, I wish to thank my parents, Niceto R. Luque and Francisca Sola. They raised me, 

supported me, taught me, and loved me. I owe you all what I am; to them I dedicate this thesis. 

 



 

x 

 

  



 

xi 

 

 

Satius est supervacua scire quam nihil. 
 

(Seneca the younger; Letter LXXXVIII: On liberal and vocational studies.) 
 

  



 

xii 

 

 



 

xiii 

 

FIGURE LIST 

Figure 1.1 Module organization of the SENSOPAC 35 

Figure 2.1. A general view of perceptual behaviorism learning. 42 

Figure 2.2. A simple reinforcement neuronal model of Physiological behaviorism. 44 

Figure 2.3. Major cells in the cerebellum. 54 

Figure 2.4. Cells in the Marr-Albus model. 55 

Figure 2.5. Internal structure in CMAC model. 57 

Figure 2.6. Internal structure in APG model. 58 

Figure 2.7. Internal structure in Schweighofer-Arbib Model. 59 

Figure 2.8. MPFIM Model. 61 

Figure 2.9. Adaptive Filter. 62 

Figure 5.1. Organización de los Módulos en  SENSOPAC 98 

 

  



 

xiv 

 

 



 

xv 

 

TABLES 

TABLE I. The cerebellar afferent pathways.                                                                                  49 

 

  



 

xvi 

 

 



 

xvii 

 

GLOSSARY 

Axon - extension from the cell that carries nerve impulses from the cell body to other neurons. 

Afferent fibers - any of the nerve fibers that convey impulses to a ganglion or to a nerve center in the 

brain or spinal cord. 

Basal ganglia - group of neural structures involved in movement control, procedural learning and 

cognitive functions; located in the forebrain (telencephalon). 

Brain - the major organ of the central nervous system. It exerts a centralized control over the organs of 

the body. 

Brainstem - also known as the hindbrain; region of the brain that consists of the midbrain (tectum, 

tegmentum), ponds, and medulla; responsible for functions such as breathing, heart rate, and blood 

pressure. 

Cell Body - region of the neuron defined by the presence of a nucleus. 

Central nervous system (CNS) - portion of the nervous system that includes the brain and the spinal 

cord. 

Cerebellum - structure located in the back of the brain (dorsal to the pons) involved in central 

regulation of movement, such as basic movement, balance, and posture; comes from the Latin word 

meaning "little brain"; is divided into two hemispheres and has a cortex. 

Cerebral cortex - the outer covering of the cerebral hemispheres consisting mostly of nerve cell bodies 

and branches; involved in functions such as thought, voluntary movement, language, reasoning, and 

perception; the right and left sides of the cerebral cortex are connected by a thick band of nerve fibers 

(corpus callosum); highly grooved or "gyrencephalic" in mammals. 

Climbing fibers (CFs) - arise from cells in the inferior olive and provide an extraordinarily strong, 

'climbing' multi-synaptic contact on Purkinje cells. However, branches of the olivo-cerebellar axon 

contact not only Purkinje cells but also other neuron types of the cerebellum. 
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Control system - a term that was originally used to refer to a mechanical or chemical system equipped 

with a mechanism for manipulating an object or regulating a process. The term now broadly applies to 

an informational, biological, neural, psychological or social system. 

Controlled object - in an object manipulation scenario, the controlled object is conceived as 

plant+object under manipulation. It translates motor commands in actual movements of plant+object 

(in a manipulation task). 

Controller - a key part of a control system, a controller converts a given instruction into a command. 

For example, the brain converts an instructed spatial position of a target into a command, which 

consists of signals in the nerves that innervate muscles. 

Deep Cerebellar Nuclei (DCN) - the nuclei at the base of the cerebellum that relay information from 

the cerebellar cortex to the thalamus. 

Dendrite - one of the extensions of the cell body that are reception surfaces of the neuron. 

Diencephalon - part of the midbrain; consists of the thalamus and hypothalamus. 

Dorsal - anatomical term referring to structures toward the back of the body or top of the brain. 

Efferent fibers - nerve fibers that take messages from the brain to the peripheral nervous system; 

motor fibers are efferent. 

Engineering control theory - a branch of engineering science concerned with the control of dynamic 

systems (including aircraft, chemical reactions and robots). 

Error signals - signals representing errors in a system. The errors are discrepancies in the performance 

of a control system from either the instruction (consequence errors) or the prediction by an internal 

model (internal errors). 

Eyeblink conditioning - in this experiment, a conditional stimulus (CS) is presented a certain time 

before an unconditional stimulus (US). Typically, a tone is used as a CS, and an air puff directed to one 

eye as the US. After repeating this training for some iterations, the subject learns to close its eye (called 

conditioned response, CR) a little time after the CS and just before the air puff reaches the eye). 

Forebrain - the frontal division of the brain which contains cerebral hemispheres, the thalamus, and 

the hypothalamus. 
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Glial cells - non-neuronal brain cells that provide structural, nutritional, and other supports to the 

brain. 

Golgi cells (GoCs) - inhibitory interneurons in the granular layer that synapse with granule cells. They 

receive excitatory input from mossy fibers and parallel fibers. 

Granule cells (GrCs) - integrate excitatory mossy fiber inputs from external sources and local 

inhibitory input from Golgi cells. 

Gray matter - areas of the brain that are dominated by cell bodies and have no myelin covering (in 

contrast to white matter). 

Gyrencephalic - when the cerebral cortex is highly folded and convoluted (due to gyri and sulci). 

Gyrus - raised portion of convoluted brain surface. 

Hindbrain - the rear division of the brain includes the cerebellum, ponds, and medulla (also called the 

rhomb encephalon). 

Hippocampus - the portion of the cerebral hemispheres in basal medial part of the temporal lobe. 

This part of the brain is important for learning and memory for converting short term memory to more 

permanent memory, and for recalling spatial relationships in the world about us. 

Hypothalamus - part of the diencephalon, ventral to the thalamus. The structure is involved in 

functions including homeostasis, emotion, thirst, hunger, circadian rhythms, and control of the 

autonomic nervous system. In addition, it controls the pituitary. 

Internal model - a functional dummy of a body part or of a mental representation in the cerebral 

cortex. Internal models are encoded in the neuronal circuitry of the cerebellum and mimic the essential 

properties of a body part or mental representation. 

Inferior olivary nucleus (IO) - Prominent nucleus in the ventral medulla located just lateral and dorsal 

to the medullary pyramids; source of climbing fibers that provide a critical input to the cerebellum, 

involved in Purkinje cell plasticity and motor learning 

Kinesthesia - feedback from muscle spindles (a more specific term than proprioception) 

Lateral - anatomical term meaning toward the side (versus medial). 
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Long-term potentiation (LTP) - the prolonged strengthening of synaptic transmission, which is 

thought to be involved in learning and memory formation. 

Long-term depression (LTD) - a persistent reduction of synaptic strength caused, for example, by 

specific neural activity. 

Medulla Oblongata/ Myelencephalon - this structure is the caudal-most part of the brain stem, 

between the pons and spinal cord. It is responsible for maintaining vital body functions, such as 

breathing and heart rate. See overall NS organization. 

Metencephalon - subdivision of the hindbrain, which includes the cerebellum and pons. 

Midbrain/ Mesencephalon - middle division of the brain, which includes the tectum and tegmentum; 

involved in functions such as vision, hearing, eye movement, and body movement. 

Molecular layer - the outermost layer of the cerebellar cortex; it contains the parallel fibers, Purkinje 

cell dendritic trees, stellate cells and basket cells. 

Mossy fibers (MFs) - provide the bulk of the afferent input to the cerebellum and originate from 

numerous sources in the spinal cord, brain stem and pontine nuclei. 

Motor cortex - a region of the cerebral cortex whose activity influences muscular movements; involved 

in planning and control of movement; found in the frontal lobe. 

Myelencephalon - caudal part of the hindbrain includes the medulla oblongata. 

Microzone - a narrow longitudinal strip (a sagittal region of Purkinje cells within a cerebellar zone that 

is approximately 50 to 100 μm wide) of the cerebellar cortex, just a few Purkinje cells wide but up to 

hundreds of Purkinje cells long, in which all the Purkinje cells receive climbing fibers driven by the same 

input (climbing fibers from a cluster of coupled olivary neurons). 

Myelin - fatty insulation around an axon which improves the speed of conduction of nerve impulses. 

Nervous System - extends throughout the entire body and connects every organ to the brain; can be 

divided into the central nervous system (CNS) and the peripheral nervous system (PNS); the basic 

building blocks of the nervous system are nerve cells or neurons. 
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Neuron - the basic building block of the brain; these cells receive input from other nerve cells and 

distribute information to other neurons; the information integration underlies the simplest and most 

complex of our thoughts and behaviors. 

Neuroscience - the science of the nervous system. 

Neurotransmitter - chemical substance which is released by the presynaptic neuron at synapses that 

transmits information to the next neuron. 

Occipital lobe - the posterior lobe of the brain; involved with vision (the "occipital cortex" is also 

referred to as the "visual cortex"). 

Parallel fibers (PFs) - arise from granule cells and provide excitatory input to Purkinje cells and 

molecular layer interneurons. 

Parietal lobe - located behind the frontal cortex (and central sulcus); involved in perception of stimuli 

related to touch, pressure, temperature, and pain. 

Peripheral nervous system (PNS) - portion of the nervous system that includes all the nerves and 

neurons OUTSIDE the brain and spinal cord. 

Pons - part of the metencephalon in the hindbrain. It relays signals related to respiration, sleep, hearing, 

arousal, etc. For example; information from the ear first enters the brain in the pons. It has parts 

involved in consciousness and dreaming. Some structures within the pons are linked to the cerebellum, 

thus are involved in movement and posture. 

Prefrontal cortex - the most anterior region of the frontal cortex; involved in problem solving, 

emotion, and complex thought. 

Presynaptic - the region of a synapse that releases the neurotransmitter (in contrast to postsynaptic). 

Primary motor cortex - motor cortex region whose activity controls the execution of movements. It 

participates in motor learning and possibly in cognitive events. Some of its parts are suggested to be 

important for initiation of voluntary movement. 

Primary somatosensory cortex - region which receives tactile information from the body. 



 

xxii 

 

Primary visual cortex - the region of the occipital cortex where most visual information first arrives. It 

performs visual processing such as pattern recognition. 

Proprioception - sensory information about pressure, movement, vibration, position, muscle pain, and 

equilibrium that is received by the brain from the muscle spindles and other sensory receptors. 

Prosencephalon - the forebrain; lies rostral to the midbrain (mesencephalon); consists of the 

telencephalon (cerebral cortex & hippocampus) and diencephalon (thalamus and hypothalamus). 

Purkinje cell - by far the largest neuron of the cerebellum and the sole output of the cerebellar cortex. 

Receives climbing fiber input and integrates inputs from parallel fibers and interneurons. 

Rhombencephalon - the hindbrain; lies caudal to the midbrain (mesencephalon); made of the 

metencephalon and myelencephalon. 

Sagittal - the plane that bisects the body or brain into right and left halves. 

Spinal cord - the part of the central nervous system that lies below the magnum foramen and that 

extends downward to just above the cauda equina; it contains the cell bodies of the spinal nerves and 

their afferent and efferent fibers 

Sulcus - a furrow of convoluted brain surface (opposite of gyrus). 

Synapse - the area between one neuron and the next through which neurotransmitters are passed 

transmitting neural messages. 

Synaptic plasticity - the ability of certain synapses to increase or decrease their synaptic strength. 

Tectum - the dorsal portion of the midbrain (mesencephalon). 

Tegmentum - ventral part of the midbrain (mesencephalon). 

Telencephalon - the frontal subdivision of the forebrain includes the cerebral hemispheres and the 

hippocampus, basal ganglia, and amygdale. 

Temporal lobe - located below the frontal and parietal lobes; involved in perception and recognition of 

auditory stimuli, memory, emotions and comprehending language. 
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Thalamus - a large mass of gray matter deeply situated in the forebrain at the topmost portion of the 

diencephalon. It relays sensory information and motor signals. Almost all sensory information enters 

this structure where neurons send that information to the cerebral cortex. Axons from many sensory 

systems (except olfaction) synapse here as the last relay site before the information reaches the cerebral 

cortex. 

Visual cortex - located in the occipital lobe; is responsible for processing visual information. 

White matter - the  white parts underneath the cortex that consists mostly of axons with white myelin 

sheaths and glia cells (in contrast to gray matter). 

Zone - a sagittal region of Purkinje cells in the cerebellar cortex that is up to 500 μm wide and that 

receives climbing fibers from a particular olivary subnucleus. 
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I n t r o d u c t i o n  

In the scientific community, it is accepted the relation between the cerebellum and different motor 

control features that humans present. In fact, it is well-known that the cerebellum plays a fundamental 

role in controlling fast and accurate movements [1] [2] [3] [4]; for example, it supervises ballistic 

movement timing [5], it is able to establish the duration of those movements in advance and supplies 

corrective motor commands [6] [7]. 

These characteristics are supported by the feedback mechanism which is present in the cerebellum 

structure [8] [9]. In this way, the cerebellum can make efficient use of mechanisms and properties such 

as elasticity in muscular movements and help the central nervous system to predict the movement of 

the body parts [10]. This set of features seems to fit well in the robotic field, where the cerebellum could 

be used as an “artificial biologically plausible controller” that drives robotic motor activity [11] [12] [13] 

[14] [15] [16] [17] [18] [19]. 

The relationship between cerebellum operation and many of the different types of local plasticity 

mechanisms is not well-known and even less known is its implication in what it is called “high level 

functions” [20] [21]. In the mid-eighties, some experimental findings in several research fields began to 

show that the cerebellum was involved not only in motor tasks but also in spatial cognition and other 

high level functions [22] [23] [24]. Neuro-image studies have shown the cerebellar activation in several 

processes such as, word generation [25], comprehension and semantic processing [26] [27], verbal 

recognition and non-verbal recognition [28], immediate verbal memory [29], cognitive planning [30], 

motor imagination [30], sensorial acquisition and discrimination [31] or cognitive attention [32]. Even 

more, some evidence has been obtained from patients with focal lesions [33] [34]: alterations on 

processing speed in complex spatial movements and operational planning tasks, word generation in 

relation to a set point or a reference value, planning and flexibility in abstract reasoning, operative 

memory or perception and motor timing. Personality changes have been also observed, agrammatism, 

dysprosody, and difficulties in fast and precise voluntary changes to focus attention. 

During the last decade, an important amount of evidence supporting the hypothesis of cerebellum 

acting in cognitive functions has been shown to be true, however, some researchers are skeptic [35] [36] 
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due to the fact that the conducted experiments are not free of doubts. Cerebellar activation in certain 

tasks does not allow researchers to directly ensure a fundamental role of the cerebellum in the cognitive 

process under study, the clinic results presents inconsistencies and contradictions, it is not easy to 

control the motor problem effects, the tasks are complex and the observed deficits are difficult to be 

interpreted, etc. Therefore, the role of the cerebellum in different cognitive and non-cognitive features 

and how it is supported by its intrinsic characteristics is an open issue. 

Keeping in mind this idea of the cerebellum being involved in multiple tasks, cognitive and non-

cognitive processes, we can consider the following points: 

• The cerebellar cortex uniform synaptic organization suggests that both motor-related and 

cognitive cerebellar functions might be emulated by using the same computational principles. 

• Biologically plausible robot control field seems to be a good candidate to work with to reveal 

cerebellar functionality. 

Consequently a combination of both fields (computational cerebellar principles and computational 

robot control theory) should give us a powerful tool to find out the cerebellar functionality. These two 

points constitute the grounds of this dissertation and it will be extended in the incoming sections. 

The main objective of this thesis is to bring some light to the functional roles of the cerebellum in both 

motor and spatial cognitive processes by exploiting computational rules that allow inferring how those 

processes could take place in the cerebellum. 

I. THE CEREBELLUM 

The human brain has (estimate) 100 billion neurons. Some sources say between 10 and 100 billion [37] 

[38]. The cerebellum takes up 10 % of the brain's total volume and contains roughly 50% of all the 

neurons in the brain [39]. 

The cerebellum looks like an independent structure attached right to the bottom  of the brain, located 

underneath the cerebral hemispheres. The cerebellum is  encased by a highly convoluted sheet of tissue 

called the cerebellar cortex, which contains almost all of the neurons in the cerebellum being Purkinje 

and granule cells the most important [37] [39] . Such a quantity of neurons and their interconnections 

allow the cerebellum to develop massive signal-processing capabilities [40] (Even though most of the 
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cerebellum outputs are driven to a set of small deep cerebellar nuclei lying in the interior of the 

cerebellum) 

The cerebellum is a region of the brain which plays a main role in motor control. In addition it is also 

related to some cognitive functions such as attention and language, and probably in some emotional 

functions  as we have already mentioned [41]. 

The cerebellum is involved in a feedback loop for muscle movement [42] [43]. When the cortex sends a 

message for motor movement to the lower motor neurons in the brain stem and spinal cord it also 

sends a copy of this message to the cerebellum [44]. This is conveyed from pyramidal fibers in the 

cortex on the cortico-pontine-cerebellar tract to the cerebellum. In addition, information reaches to the 

cerebellum from muscle spindles (Kinesthesia), joints and tendons (Proprioception) [45]. This 

information allows the cerebellum to determine how well motor commands coming from the cortex are 

being carried out and then, it can coordinate the muscle activity for the production of smooth 

movement through its connections with the pyramidal and extra pyramidal systems and the descending 

reticular formation [46] [47]. 

In the framework of this coordination of fine motor movements the cerebellum makes important 

contributions to the control of rapid, alternating muscle movements necessary for high speed tasks. 

Moreover the cerebellum is not only involved in direct motor control but also with several types of 

motor learning, being the most relevant one the learning of adjusting changes in sensorimotor 

primitives [48]. Along last decades an enormous theoretical modeling effort has been done to explain 

sensorimotor calibration in terms of synaptic plasticity within the cerebellum (for a deeper review the 

reader is referred to chapter 2 section 4). Most of those theoretical models are based on early models 

formulated by Marr-Albus [49] [50], where each cerebellar Purkinje cell receive two dramatically 

different types of input: on one hand, thousands of inputs from parallel fibers, each individually very 

weak; on the other hand, inputs from one single climbing fiber, which is, however, so strong that a 

single climbing fiber action potential will reliably cause a target Purkinje cell to fire a complex action 

potential. The basic concept of the Marr-Albus theory is that the climbing fiber serves as a “teaching 

signal” [51], which induces a long-lasting change in the strength of synchronously activated parallel fiber 

inputs [52]. Observations of long-term depression in parallel fiber inputs have provided support for 

theories of this type, but their validity remains controversial. [53] 
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A theoretical cerebellar model based on spiking neural network has been implemented and evolved 

along this thesis and it is presented in the included journal papers. 

II. THE CEREBELLUM IN MOTOR CONTROL 

Biological control systems (which deal with non-stiff-joint plants, as a human arm is) have evolved 

during millions of years and have become into an interesting paradigm to emulate in robotic controller 

construction [54]. The cerebellum is known to be involved in control and learning of smooth 

coordinated movements [6]. Furthermore, an accurate understanding of how this advance control 

engine works should have a strong impact in controlling biomorphic robots. 

Human arm, as a mechanic manipulator, consists of rigid organs, bones, which are joined with flexible 

unions with respect to objects to be manipulated. Both, bones and joints are actuated by muscles; these 

muscles act as high performance effectors (high relationship between effort/mass).  These effectors 

produce a contraction effort when nervous stimuli arrive, and in order to allow bidirectional rotational 

movements in each joint, they are disposed in opposite pairs [55]. 

The whole set; arm-forearm-hand does not possess an exceptional mechanic accuracy but it has a great 

mobility (27 Degrees Of Freedom: 4 in each finger, 3 for extension and flexion and one for abduction 

and adduction; the thumb is more complicated and has 5 DOF, leaving 6 DOF for the rotation and 

translation of the wrist [56] plus 7 DOF [57] of the arm) and a great amount of effort sensors to 

compensate for this lack of accuracy helping in the control tasks. Our high handling performance is in 

part, a consequence of the cerebellum working as a control system which is able to develop highly 

complex tasks with unreachable results by any other current robot control system. 

In a biological control scenario with touch sensing, the transmission delay of the generated spike from 

the finger contact with any surface and the arrival time of this spike into the cerebellum cortex is around 

70ms, that is, the control loop presents a delay between 100-150ms [58](Actually standard industrial 

control loops cannot deal with such delays in transmission paths) [59]. This means that our handy 

human arm is not able to develop contact tasks which requires correction torques with a frequency 

higher than 6 or 10 times per second (about 100-150ms delay). The response to very fast events is 

usually attenuated by the hand, but when the contact takes place with a stiff arm-element, such as fist is, 

the presented error is high. [60] 
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Then, how human beings have an extraordinarily manual ability when interacting with different 

scenarios? In fact, the arm (prior contact), presents a certain stiffness modulated by muscles. The 

simultaneous muscle pair activation allows increasing the joint stiffness. For instance the elbow can 

increase its stiffness in a ratio of 200 to 1 [60], by using biceps and triceps muscle. The proper arm 

stiffness is set using the previous task knowledge; afterwards this stiffness is modified before contact 

(before suffering position error muscles adjust and keep the proper stiffness without the intervention of 

the entire control loop) in order to optimize this task in terms of the specific task parameters (position, 

velocity, acceleration, torque value, etc.) 

Through this thesis, it is assumed that agonist-antagonist muscle pair is able to modify stiffness but, in 

fact, from a global point of view, which is modified is not the stiffness but the mechanic arm 

impedance. In a simple scenario, we can consider that the arm impedance has three parameters per 

D.O.F: stiffness, mass and damping. Thus, this impedance provides the static and dynamic relations 

between force and motion. 

It is clear enough that a control implementation which modifies the mechanic robot impedance allows 

having an approximation to human arm behavior. 

To that aim, this thesis has evolved a biological plausible cerebellar controller in a robot control 

scenario which is showed in the included journal papers. 

III. MOTIVATION 

The cerebellar architecture has been studied for more than a century, however its functional role and 

operation remains being an open issue [21] [61]. It is well known that cerebellum plays an important 

role in motor control making a fundamental contribution to the coordination, precision, and accurate 

timing of movements [62]. The cerebellum receives inputs from sensory systems and from other parts 

of the brain and spinal cord, and integrates them with motor commands in order to modulate the motor 

activity and improve the movement performance [46] [47]. Many theories have been proposed to 

explain the operation of this region of the brain, and some of them have achieved a remarkable success 

[46,47,63,64]. However, several specific types of neurons, connections and plasticity mechanisms have 

been discovered in the cerebellum. Each of them possesses concrete properties which confer different 

information-processing capabilities. And even so, when modeling large nervous circuits to investigate 
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their operation, these specific properties are usually not properly considered; either because they are not 

implemented (simple neural models and networks) or they are implemented (computationally-costly 

biological models) but their contribution to the entire network computation is not clearly understood. 

Consequently, in order to clarify how the computation is done in our cerebellum and to prove 

hypotheses about its operation, nervous circuit simulations seems to be a test bench. Applying those 

cerebellar hypotheses to a demanding motor control task scenario gives us the chance to discover how 

the sensorimotor and cognitive information could be managed by a computational cerebellar like 

architecture and to determine which the key functional properties of the neural processing are and how 

they contribute to the resultant computation performed by the entire network. 

From the control theory point of view, the best system is the one that achieves the best performance in 

terms of accuracy, speed and stability. This idea can be extrapolated to neuroscience, in a sense that the 

best performing biologically inspired system possible should give clues, and deeper understanding, 

about the real biological system. In this way, the network parameters that allow us to discern which 

architecture presents a better behavior can be studied. On the other hand, generating efficient 

functional large-or-medium-scale networks can be exploited in a practical task. Specifically, these 

realistic networks can be applicable to robotic control. An understanding of the theoretical principles 

underlying the simplicity, flexibility and robustness of biological control schemes is therefore of interest 

to control engineers. More specifically the cerebellar learning mechanism is capable of producing 

predictive responses statistically tuned to the demands of the environment so that an understanding of 

its control properties will be of direct benefit to those designing moving robots. This application may 

have major impact if the forecasted large growth in all robotics areas occurs. Cerebellar-inspired control 

schemes will be especially important for the new generation of 'soft' robots, designed for safe 

interaction with humans in clinical and home settings. Because of the high dimensionality that a realistic 

neural network has and the timing constraints a simulated/realistic robot control scenario presents, an 

ultra-fast simulator of biologically realistic neural networks is mandatory, the performance requirements 

demand an efficient simulator (EDLUT) able to perform even in real time [65] [66]. The combination 

of both fields, these biological architectures and robot control theory, involves a cutting-edge challenge. 

A whole cerebellum model simulation embedded into a control loop to accurately control a robotic arm 

constitutes a demanding test bench for the developed biological system. It is necessary to address all the 

inconveniences of working in between of two worlds; biology processing is written in spike terms, 

robot control processing is written in analog control signal terms, a Rosetta stone has to be found out. 
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IV. OBJECTIVES 

The main aim of this work lies in the study and implementation of functional cerebellar like models 

working in a robot control scenario, taking full advantage of the capabilities of the cerebellar 

architecture. This implementation aims at contributing to a better understanding of the central nervous 

system (essentially the cerebellum) from a computational approximation and to assess its application in 

the robotic domain. 

The design of a cerebellar model embedded in a control loop is not straight forward. Reaching this aim 

demands a continuous developing process which has been divided into different stages according to the 

journal papers included in order to give a gradual overview of the whole developed work. 

 The first objective is the study of how an adaptive cerebellum-like module embedded in the 

control loop can build up corrective models to compensate deviations in the target trajectory 

when the dynamics of the controlled plant (arm-hand-object in the case of a human operator) 

are altered due to manipulation of heavy objects (whose mass significantly affects the basic 

model dynamics). We address the study of how this corrective model is inferred through a 

biologically plausible local adaptation mechanism using a simplified cerebellar architecture. 

Through the development of this simple cerebellar module, we can monitor how the synaptic 

weight’s space adapts to a distributed stable model that depends on the basic network topology, 

the target trajectory, and model deviations. 

This is covered in [14] (paper included in the fourth chapter). 

 The second objective is to describe how a more realistic spiking neural network (a granular 

layer is now implemented) mimicking a cerebellar micro-structure allows internal corrective 

model inference. By adopting a cerebellar-like network, we explore how different sensor 

representations can be efficiently used for a corrective model abstraction corresponding to 

different manipulated objects. It has been done in two steps: 

i. We address a biologically relevant task which consists in an accurate 

manipulation of objects which affect a base (kinematic and dynamic) model 

of the plant using low power actuators. 
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ii. We define and implement a spiking-neuron based cerebellum model to 

evaluate how different properties of the cerebellar model affect the 

functional performance of the system. 

This is covered in [12] (paper included in the fourth chapter). 

 Thirdly, we aim at studying how an adaptive spiking cerebellum-like module which includes 

long-term depression (LTD) and long-term potentiation (LTP) at parallel-fiber to Purkinje-cell 

synapses (PF→PC) is embedded in diverse control loops (forward,  recurrent, and a 

combination of both architectures) to infer corrective models which compensate deviations in 

the robot trajectory when the dynamics and kinematics of the controlled robotic arm are 

altered and noise (related to the inherent noise of the muscle spindle signal) is introduced in the 

cerebellar input (MFs). The main goal at this point is to make a comparative evaluation of these 

control architectures which shows how forward and recurrent architectures complement each 

other in the framework of a manipulation task and how robustly they behave in the presence of 

noise. 

This is covered in [13] (paper included as fourth chapter). 

 The last objective is to study the best way in which sensori-motor information in a common 

robot scenario can be encoded to investigate an optimal representation of somatosensory 

information. 

This is covered by the last paper included in the fourth chapter. 

V. PROJECT FRAMEWORK 

This work has been developed in the framework of two European projects “SENSOrimotor structuring 

of Perception and Action for emergent Cognition” (SENSOPAC) and “Realistic Real-time Networks: 

computation dynamics in the cerebellum” (REALNET (IST-270434)). 

The SENSOPAC (IST-028056) project (belonging to the EU Framework 6 IST Cognitive Systems 

Initiative) extended from January, 2006 to July, 2010 in collaboration with 12 institutions from 9 
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different countries. The SENSOPAC (IST-028056) project combines machine learning techniques and 

modeling of biological systems to develop a machine capable of abstracting cognitive notions from 

sensorimotor relationships during interactions with its environment, and of generalizing this knowledge 

to novel situations. In particular, SENSOPAC (IST-028056) has combined robot dynamic models with 

sensory causal relationships in a haptic exploration task, in order to grasp and decide. Detailed neural 

models of key brain areas have been embedded into functional models of perception, decision making, 

planning, and control, effectively bridging and contributing to neuroscience and engineering. 

Sensory feedback including tactile sensory arrays, proprioceptive feedback, and motor command 

afferents have been employed for manipulation tasks under various contexts allowing the study of 

efficient representations, encoding/decoding mechanisms and abstractions; both in human haptic 

manipulation as well as artificial robotic sensor systems. 

Our research group at the University of Granada has been mainly involved in the development of the 

spiking neuron computation environment (EDLUT) following neuroscientist findings in order to 

design biologically inspired control systems capable of carrying out manipulating tasks. 

 

Figure 1.1 Module organization of the SENSOPAC 
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Our work as a partner is focused in biological relevant controller and simulation module provide a 

bridge between neurophysiologist and control theory in robotic systems. 

More recently our research group is involved with the REALNET (IST-270434) project as a 

continuation of SENSOPAC (IST-028056) project. REALNET (IST-270434) project (funded under 

the EU Framework 7 Information and Communication Technologies work program) started in 

February, 2011 and will last until February, 2014. The main goal of this project is to understand the 

circuits of the central nervous system from the functional level to the molecular/neuronal level. In 

order to understand circuit computations a different approach is needed: it aims to elaborate realistic 

spiking networks and use them, together with experimental recordings of network activity, to investigate 

the theoretical basis of central network computation. As a benchmark this project will use the cerebellar 

circuit. Based on experimental data, this project will develop the very first realistic real-time model of 

the cerebellum. This cerebellar model will connect to a biomorphic robotic system to evaluate circuit 

functioning under closed-loop conditions. The data deriving from recordings, large-scale simulations 

and robots will be used to explain circuit functioning through the adaptable filter theory. 

Because of the multidisciplinary properties these projects require each of the members of our research 

group to focus their research in a particular area. The present work mainly presents results where a 

cerebellum-like simulated architecture has been used in order to manipulate tools with a robotic arm. 

This work implies dealing with robotic system; developing a robotic arm simulator, studying the 

biologically plausible control loops, conversion from/to spiking signals, embedded the EDLUT 

simulator in the control loop, studying the spike/analog connection… etc. All these issues focus my 

research but it is mandatory to point out that all this work would not have been possible without the 

hard work of Jesus Alberto Garrido who is in charge of evolving the EDLUT simulator environment 

and performing simulations of more realistic biological structures. Our hard work shoulder to shoulder 

trying to bring some light to the motor control theory; from the biology findings through the 

implementation in realistic spike simulator to a robot control loop, has made this thesis possible. 

VI. CHAPTER ORGANIZATION 

In order to facilitate the reading and utilization of this dissertation we provide a concise summary of the 

information presented in each chapter: 
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 In chapter 1 (the present chapter), a brief introduction of state of the art in computational 

neuroscience applied in robot control scenarios is described. The motivation of this 

dissertation is presented and the work carried out is summarized. 

 In chapter 2, a proper contextualization of the research area in which this thesis has been done 

is presented. Although journal papers are self-contained, a previous overview on the research 

field aims to make easier the task of getting deep into details through the journal papers. 

 In chapter 3, we briefly enumerate the main contributions and future work plans. 

 Finally in chapter 4, all the related papers are included with a brief remark about the source 

journals, their impact factor and the quartile to which they belong. In addition other 

publications associated to this work (conference articles and cooperative journal articles) are 

also indicated. 
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T h e s i s  C o n t e x t u a l i z a t i o n  

In this chapter, we try to contextualize the research area in which this thesis has been developed. Due to 

the “journal article structure” used in this thesis, we first briefly introduce the research area related to 

this thesis. Therefore, we hope that the rest will be easier to follow for the reader and, in general, will 

facilitate to have a global picture of the work accomplished. 

I. ANATOMY OF THE MEMORY 

One of the most important aspects that the brain presents is its learning ability and its storage capacity 

of dynamic entry patterns. The way in which our experiences are structured and stored by our brain and 

how these experiences have an effect in our behavior, is strongly related with the nature of this storage 

process [67]. The memory is not something tangible which is stored as an image in a computer and it is 

invoked on demand.  The experiences change the way in which we perceive, we think, we plan and we 

act. These experiences physically modify the nervous system structure, changing those neuronal circuits 

which are involved in perception, thinking and planning [68]. For example, an unpleasant or disturbing 

experience will tend to be avoided; in contrast, we will try to repeat those experiences which gave us 

satisfaction or pleasure. 

One of the main brain functionalities is to activate the muscles in order to produce useful operating 

conducts. The learning capability is the result of developing useful operating conducts which are 

adapted to our surrounded dynamic environment. The learning shows up in different ways (Fig. 2): 

• Perceptual learning: ability to learn to recognize stimuli that have been seen before [69]. 

 Primary function is to identify and categorize objects and situations 

 Changes within the sensory systems of the brain 

• Stimulus-response learning:  ability to learn to perform a particular behavior when a certain 

stimulus is present. Establishment of connections between sensory systems and motor systems. 
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• Motor learning: establishment of changes within the motor system [70] [71]. 

• Relational learning:  involves connections between different areas of the association cortex 

[72]. 

• Spatial learning:  involves learning about the relations among many stimuli [73] [74]. 

• Episodic learning:  remembering sequences of events that we witness [75]. 

• Observational learning: learning by watching and imitation other people [76]. 

 

Figure 2.1. A general view of perceptual behaviorism learning: stimulus response learning and motor learning [67]. 

 

II. BEHAVIORISM. PSYCHOLOGICAL BEHAVIORISM 

The psychologist F.B Skinner [67], in the seventieths, developed a fundamental research; the behavior 

analysis in terms of stimuli and responses. Considering behaviorism as “the observable activity that an 

individual performs” (activity that basically consists of movements) then what we called behaviorism is 
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based on a set of rules that regulates the dependency between behavioral elements (mainly stimuli and 

responses) by means of finding out functional relationships. Considering the organism as a black box in 

which only inputs and outputs are well known; being the functional correlation between stimuli and 

responses a “reflex”, and finally taking into consideration a reflex action as an instrument to describe 

the behaviorism (classical behaviorism), but just as a behavioral action not as a neurological concept, so 

then, we can described the Psychological behaviorism [77] as a kind of behaviorism that examines 

behavioral changes in relation to the results (experience) focusing its attention in the learning process. 

For instance, when a hungry rat is placed in a cage for the first time, it is very unlikely the rat activates 

the feeding mechanism. Nevertheless, when the rat activates the mechanism and receives a piece of 

meal, after that, the probability that the rat activates again the mechanism, increases. But ¿how does 

psychological behaviorism work? Figure 2 shows a possible model. The visual system of the previous 

rat has two neurons. One of them fires when the rat sees the feeding mechanism the other one fires 

when the rat sees a bottle of water.  The motor system has three neurons, each of them has a specific 

functionality (moving the ears, standing only on the hind legs, and activating the feeding mechanism). 

Another neuron is part of the reinforcement system. This one fires when the rat is hungry and receives 

some food. Initially, the M synapsis (Mechanism) is too weak for firing the motor neuron. However, the 

rat explores the cage and, by chance, activates the feeding mechanism. This positive fact is detected by 

the reinforcement system which synapses onto all moto-neurons. When the reinforcement synapsis R 

(Reinforcement) fires makes all the synapsis recently activated stronger. On this case, the synapsis M is 

responsible of reinforcing the learning when the mechanism is activated. When this last synapsis has 

been reinforced enough, just the mechanism vision provoke the behavior of activate that mechanism. 
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Figure 2.2. A simple reinforcement neuronal model of physiological behaviorism. 
When the animal sees the feeding mechanism, and then activates it, a positive event happens. The activity of the 
reinforcement system makes the synapsis M stronger. 

III. NEURAL NETWORKS, MODELING THE LEARNING 

CAPABILITY OF THE BRAIN 

The experience modifies the neural connections of our brain, and these modifications, these changes, 

represent what it is already learned [78] [79]. But ¿why does a new sensorial stimulus modify the way in 

which neurons respond to the stimuli already learned? One possible answer can be deduced from the 

functional models of the neural circuits, that is, the neural networks. Each “element” has computational 

properties as neurons have; these “elements” are connected to each other through connections which 

are similar to a synapsis. These connections can be excitatory or inhibitory as real synapses are. 

When one of these “elements” receives a critic amount of excitation, it sends a message to those 

elements to which it is connected. The elements of the network have inputs that can receive “external” 

signals, representing a sensorial organ or received information from other network, for example as a 

feedback of our network. Other “elements” have outputs which control muscles or connect with other 
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network producing particular behaviors. That means, particular patterns in the inputs can represent 

particular stimuli and particular output patterns can represent particular responses. 

It is possible to “teach” neural networks to recognize particular stimuli. These networks receive a single 

input pattern, being the inhibitory and excitatory elements of the neural circuit those that refine the 

response of the network when it is faced to a defined input pattern. The first time a defined stimulus is 

presented, the output “elements” response in a weak and unspecific way; but after several trials, a strong 

and reliable response pattern emerges. More stimuli can be presented to the network and then more 

corresponding specific output patterns can be generated. The functional properties of the neural 

network are quite similar to those which can be found in real nervous system, and this is the reason why 

Scientifics are interested on the fundamental principles of the neural learning. For instance, neural 

networks show generalization, discrimination and soft degradation. Generalization in this case, should 

be understood as the capacity of recognizing similarities between stimuli. For instance, let assume that 

our network has learnt some different stimuli, if we show to the network a stimuli similar to that one 

that it has already learnt, the network response pattern will be very close to that response which is 

produced when the already known stimulus was shown. What we understand for discrimination is the 

capability of recognizing differences between stimuli. If several similar stimuli are presented to a neural 

network, the network will learn to distinguish them and it will produce different output patterns for 

each stimuli. Finally the term soft degradation is used to indicate that the apoptosis (the malfunctioning 

of different elements or connections, synapses, in the neural network) do not make the whole neural 

network stop totally working. Instead of stopping working, the processing progressively deteriorates 

depending on the rate of deterioration that the neural network presents. All of these three phenomena; 

generalization, discrimination and soft degradation also characterize the behavior of our brain. 

Our cerebellum is built up by neural networks which involves that our learning takes place within these 

neural networks. The question relies on the possibility of replicating the brain functionality with these 

neural networks. Knowing the neural circuits’ anatomy in detail and the physiological characteristics of 

single neurons and their synapse connections is the only way to give answer to that question. The more 

we learn about this issue, the more realistic neural network model we can build up. 

As a first step, this research field tries to study what it is called microstructure, of the brain, that is, brain 

functions which are performed by individual modules. The brain presents a huge amount of neural 

networks (it seems to be thousands), where each of these neural networks has it corresponding 

functionality. It is likely that those neural networks present a hierarchical structure where some of them 
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control the functionality of other ones and regulate the information exchange between them. Therefore, 

the individual comprehension of the operations that happen in a specific neural network will not reveal 

all we need to know about the brain functions. We will also need to know the brain organization 

(relationship between individual neural networks which compose the brain). Then the brain 

macrostructure need to be also known.  Developing and improving neural networks is linked to brain 

macro and microstructure research; macro-microstructure research supplies a fundamental physiological 

base which supports the artificial neural network develop. 

IV. CEREBELLAR CONTROL 

1. Distributed Motor System 

The cerebral motor system is a complex controller. A good way to realize of this could be shown by 

using an example. Let’s suppose we see on the corner of our eye something that is moving. Quickly turn 

our head and look towards the source of motion, and we found that someone has taken a blow to a 

vase of flowers and it is about to fall off the table. Quickly we extend the arm, grab the vase and try to 

put in a stable position. 

The rapid movement of the head and eyes is controlled by mechanisms involving the superior colliculus 

and some nearby nuclei. The head and trunk movements are driven by the tectospinal tract. We note 

how the vase was tilted by the activity of neurons in the visual cortex. The same visual cortex also 

provides information on depth to the right parietal lobe, which is able to determine the spatial location 

of the vase. Our left parietal lobe uses the spatial information, along with its own record of the location 

of the hand to determine the path it has to do to intercept the vase. The information is sent to the left 

frontal lobe, where the associative motor cortex begins with the movement. Since this movement has to 

be ballistic, the temporal pattern control is based on the information received from the associative 

cortex of the frontal and parietal lobes. Our hand stops at the instant it touches the vase, and the 

connections between the somatosensory cortex and primary motor cortex start the reflex of closing the 

hand to grasp the vase. 

The hand movement is controlled by the cooperation of the corticospinal, rubrospinal and 

ventromedial tract. Even before our hand begins to move, the ventral corticospinal tract and the 
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ventromedial pathway begin to adjust our posture to avoid our falling when we go to pick it up. 

Depending on how far we are away from the jar, the reticulospinal tract can even make us take a step to 

keep balance (adapted from [80]). 

2. The Cerebellum. Introduction 

The cerebellum is an important part of the motor system [1] [81] [82] [63] [83]. It consists of two 

hemispheres that contain several deep nuclei located just below its folded and wrinkled cortex. Thus, 

the cerebellum looks like a miniaturized brain [37]. 

The cerebellum cortex receives inputs from the brain cortex encoding extrinsic and intrinsic movement 

parameters. [84] In fact, the cerebellum contributes both to control rapid and accurate movements and 

to control the temporal development of fast ballistic movements, movements which are too fast to be 

modified by feedback circuits [85] [86]. Because of that, the sequence of muscle movements must be 

programmed in advance, so then, individual muscles should be activated at the right time. Considering 

the distance between our hand and the aim to reach, our cerebellum calculates the timing that muscles 

should be active [64] [42] [9]. After that time, the cerebellum briefly activates the antagonistic muscles to 

stop the movement. [46] [47] 

Another main function of the cerebellum is programming the duration of rapid movement. The 

cerebellum monitors and provides corrective adjustments to motor activities triggered by other parts of 

the brain. The cerebellum continuously receives current information from the peripheral body parts to 

determine the instantaneous state of each of its areas (position, rate of motion, forces acting on it, and 

so on) [21] [87]. The cerebellum compares the actual physical condition of each body part as indicated 

by the sensory information with the state the motor system is trying to produce. If these two values do 

not instantly match, then the appropriate corrective signals are transmitted to the motor system, 

increasing or decreasing the activity of specific muscles [46] [47]. 

The cerebellum communicates with the brain through a cord of fibers called superior cerebellar 

peduncles, with the pons through the middle cerebellar peduncles and with the medulla oblongata 

through the inferior cerebellar peduncles [88]. 
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The gray matter contains cells that constitute the origin of the fibers that synapses with those fibers 

which enters into the cerebellum coming from other parts of the brain. The impulses from the motor 

centers of the brain, from the semicircular canals of the inner ear and from striated muscles get into the 

cerebellum by the peduncles. Cerebellar motor impulses are transmitted from the motor centers of the 

brain and the spinal cord to the muscles [88]. 

3. The Cerebellum Entry System (Cerebellar Afferent 

Pathways) 

The cerebellum is divided into three lobes: flocculonodular lobe, anterior and posterior lobe. The 

vermis is located in the anterior and posterior lobe. Most of the nerve signals which are originated in the 

somatic areas of the body end in the vermis [37] [88]. The vermis plays a role in the integration of 

subconscious postural mechanisms. Most of the signals coming from the highest levels of the brain, 

especially the motor areas of the cortex, finish in the cerebellar hemispheres [89]. 

Cortico-cerebellar tract is born in the motor cortex and directly links with the cerebellar cortex. In 

addition, major afferents arise from the brain stem, the inferior olive, motor-cortex, basal ganglia and 

finally scattered areas of the reticular formation and spinal cord [88] [90]. 

The cerebellum also receives important sensory signals directly from the body periphery. The signals 

from these body parts arise from the muscle spindles, Golgi tendon organs, and large tactile receptors 

both on skin and joints, which informs the cerebellum of the current state of muscle contraction, the 

degree of tension in the tendons, the body part positions, and the acting forces on the surfaces of the 

body. All this information is processed in the cerebellum which is constantly informed of the 

instantaneous physical state of the body [88] [90]. 

Spinocerebellar tract can transmit impulses with latencies of less than 100 ms; that is the faster 

transmission in any impulse transmission path throughout the central nervous system. This extremely 

fast transmission allows the cerebellum to quickly know the changes taking place in the state of the 

muscles. The cerebellum continuously receives information from all body parts, despite of these body 

parts are working at a subconscious level. 
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TABLE I. The cerebellar afferent pathways [88]. 

 

Pathway Function Origin Destination 

Afferents from the cerebral cortex 

Cortico-

ponto-

cerebellar 

Conveys 

control from 

cerebral cortex 

Frontal, 

parietal, 

occipital & 

temporal lobes 

Cerebellar cortex 

Cerebro-

olivo-

cerebellar 

Cerebro-

reticulo-

cerebellar 

Sensorimotor 

areas 

Via reticular 

formation to 

cerebellar cortex 

Afferents from the spinal cord 

Anterior-

spino-

cerebellar 

Conveys 

information 

form muscles & 

joints 

1. Muscle 

spindles 

2. Tendon 

organs 

3. Joint 

receptors 

Cerebellar cortex 

Posterior-

spino-

cerebellar 

Cuneo 

cerebellar 

Conveys 

information 

from muscles & 

joints of upper 

limbs 

Afferents from the vestibular nerve 

Vestibular 

nerve 

Conveys 

information on 

1. Utricle 

2. Saccule 

Cortex of the 

Flocculonodular 



50 Chapter 2 

 

 

 

head position 

& movements 

3. Semi 

circular 

canals 

lobe 

Other 

afferents 

Conveys 

information 

from the mid 

brain 

1. Red nucleus 

2. Tectum 

Cerebellar cortex 

 

The main entrance to the cerebellum is carried out by mossy fibers [87] [91]. Mossy fibers carry 

information from sources that control the balance (vestibular system), warning (reticular formation), 

motor activity (cerebral cortex), sensory organs and location of the tendon positions, contraction speed 

of muscles, and skin pressure [92] [93] [94] [95] [96] [97] [98]. 

Mossy fibers can be classified according to the origin of the information that they carry in two classes: 

1. Those which carry information from higher hierarchical levels. 

2. Those which carry feedback information about the results corresponding to the motor control 

output. 

Once in the cerebellum, these two classes are mixed, in an indistinguishable way. 

4. The Cerebellum Output System (Cerebellar Efferent 

Pathways) 

There are four deep cerebellar nuclei located deep in the cerebellar mass, being these cerebellar deep 

nuclei, the sole outputs of the cerebellum. These nuclei receive signals from two different sources: the 

cerebellar cortex, and all the sensory afferent pathways to the cerebellum. The cerebellar input is carried 

by the mossy fibers. Three major efferent pathways can be found [88]: 
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1. A pathway that starts in the cortex of both cerebellar hemispheres, which goes to the motor 

cortex. 

2. A pathway that starts in the structures of the midline cerebellum (vermis) and targets at bulbar 

and pontine regions of the brainstem. This circuit works in close relationship with the 

apparatus of balance and postural attitudes of the body. 

3. A pathway that originates in the intermediate areas on each side of the cerebellum, connecting 

the vermis and cerebellar hemispheres, the motor cortex, the basal ganglia, the red nucleus and 

reticular formation of the upper brain stem. This circuit works for coordinate activities between 

the two first mentioned output cerebellar pathways, that is, to help coordinate the interfaces 

between postural control subconscious bodies and voluntary conscious control of the motor 

cortex. 

In addition to these inputs, all cerebellar nuclei and all regions of cerebellum get special inputs from the 

inferior olive of the medulla. 

Cerebellar peduncles. Three fiber bundles carry the input and output of the cerebellum [88]. 

1. The inferior cerebellar peduncle (also called the restiform body) primarily contains afferent fibers 

from the medulla, as well as efferents to the vestibular nuclei. 

2. The middle cerebellar peduncle (also called the brachium pontis) primarily contains afferents 

from the pontine nuclei. 

3. The superior cerebellar peduncle (also called the brachium conjunctivum) primarily contains 

efferent fibers from the cerebellar nuclei, as well as some afferents from the spino-cerebellar tract. 

Thus, the inputs to the cerebellum are conveyed primarily through the inferior and middle cerebellar 

peduncles, whereas the outputs are conveyed primarily through the superior cerebellar peduncle. 

5. The Cerebellum Cortex 

The cerebellar cortex is divided into three layers: Molecular, Purkinje cell, and granular layer and at least 

seven or more types of neurons connected in a very specific and uniform way can be differentiated [99]. 

The molecular layer is located at the surface of the cerebellar cortex, it contains: 
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 Two types of interneurons: stellate and basket cells 

 The parallel fibers 

 The Purkinje cell’s dendritic tree. 

Below the molecular layer, the Purkinje cell layer gathers the somas of the Purkinje cells. Finally, the 

granular layer — the deepest of the cerebellar cortex — contains the somas of granular cells, an 

ascending section of granular cell’s axons, the Golgi cells, the Lugaro cells, the unipolar brush cells, and 

the glomeruli, an intricate formation that receives contacts from mossy fibers and inhibitory cells from 

the same layer [100]. 

Furthermore, the cerebellum contains a large quantity of glial cells which are located in the gray and 

white matter. 

In the following section, we will give an overview on the cytoarchitecture of the cerebellar cortex and 

describe the internal circuitry and cellular components of the cerebellar micro-complex. 

6. Micro-complex Theory 

The functional units of the cerebellar cortex are identified as longitudinal zones, zones which are usually 

divided into smaller microzones consisting of [101] about 1000 Purkinje longitudinally located in a 

narrow strip (200mm). This group of Purkinje cells presents the same somatotopic receptive field [102]. 

Each micro-zone of the cerebellar cortex receives climbing fibers from a different group of olivary 

neurons [103]. 

Each longitudinal zone of the cerebellar cortex targets a specific cerebellar nucleus. That involves that 

each micro-zone is also combined with a small group of neurons in a cerebellar or vestibular nucleus. 

The combination of a micro-zone with a set of subcortical structures (cerebellar or vestibular nucleus, 

the inferior olive and the red nucleus) constitutes which is called a corticonuclear micro-complex, or 

cerebellar micro-complex.  These micro-complexes are hypothesized to be the operational unit of the 

cerebellum [81] [104]. It is believed that human cerebellum presents thousands of micro-complexes 

which play different roles by interacting with a functional system at the spinal cord, the brainstem, the 

subcortical structures and the cerebral cortex. 
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7. Internal Circuitry. The Human Control Loop 

The three main layers of the cerebellar cortex are: the molecular layer, Purkinje cell layer and granular 

cell layer [99]. In addition to these layers, the deep cerebellar nuclei are located inside the cerebellar mass 

and surrounded by white matter. Most of the output of the cerebellar processing units comes from deep 

nuclei cells. The output information from the cerebellum is driven by the axons of our deep nuclei cells 

and flocculonodular lobe cells, which project onto different areas of the central nervous system. These 

cells are continually under the influence of both types of stimulation, excitatory and inhibitory. The 

output of the cerebellar cortex is conveyed by the inhibitory axons of the Purkinje cells. These Purkinje 

cells receive two major excitatory inputs; Purkinje cell receives the excitatory input of single climbing 

fibers, and at the same time, through the numerous synapses with parallel fibers [37] [105]. 

The inputs in the cerebellum are of two types, one called climbing fibers and the other mossy fibers. 

There is a climbing fiber per 10 Purkinje cells approximately. The information path begins with mossy 

fibers. Mossy fibers reach the cerebellum and target both the deep cerebellar nuclei and the granular 

layer. Most of granule cells and, to a lesser proportion, Golgi cells are contacted. Climbing fibers also 

create collaterals innervations with deep cerebellar nuclei with a few synapses and it is thought that they 

might also be sparsely projected to some types of neurons in the cerebellar cortex (such as Golgi cells) 

[37] [105]. 

As it is said, a single Purkinje cell receives hundred thousands of synapses from parallel fibers. Those 

parallel fibers also handle inhibitory basket and stellate cells activity, which in turn project to Purkinje 

cells. Finally, closing the loop, granule cells receive excitatory signals from the same mossy fibers that 

innervate deep cerebellar nuclei. Granule cells and mossy fibers also send projection to Golgi cells, 

which in turn inhibit the granular cells [37] [105]. 

Summarizing, the stimulation of a single mossy fiber never triggers an action potential in Purkinje cell; 

thus, a large number of mossy cells must be simultaneously stimulated to activate a Purkinje cell. 

Golgi cells are also contacted by parallel fibers. These cells have a dense dendritic tree.  Each Golgi cell 

has an axon with extensive branches. This axon makes inhibitory contact with about 100,000 granule 

cells in their immediate neighborhood, including some granule cells (granule cells which are branched in 

parallel fibers) that previously excited them. Golgi cells suppress all granule cell outputs which are not 
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maximally stimulated. As a result, each pattern or input vector is transformed by the granular layer into 

a small and a relatively fixed percentage of active parallel fibers. Each Purkinje cell performs a 

“summation” of their inputs (synapses), producing more specific outputs. The basket and stellate cells 

are essentially inhibitors that provide “negative weights” to Purkinje cells, which are added to the 

“positive weights” of the parallel fibers. 

The climbing fibers cells are the second set of incoming fibers to the cerebellar cortex. Typically there is 

a climbing fiber per Purkinje cell. The output of the Purkinje cell depends on the input of the climbing 

fiber (each single spike produces an output spike on the Purkinje cell) and also on the inputs of the 

parallel fibers (whose contribution depends on the parallel fiber - Purkinje cell weights). These weights 

seem to be altered with the correlation between the inputs from the climbing fiber and from parallel 

fibers. Climbing cells may provide the necessary information for learning. 

 

Figure 2.3. Major cells in the cerebellum. 
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8. Models of Cerebellar Control (Computational Models) 

a. The Marr-Albus Model 

In the Marr-Albus Model [49] [50] the cerebellum works as a classifier of sensory-motor patterns which 

are received through the MFs. Just a small portion of parallel fibers (PF) are activated when a Purkinje 

cell (PC) fires thus driving the motor neuron output. In this model, the error signal is supplied by the 

climbing fibers (CF), because they are specific to each PC. These error signals (encoded in activity 

through CFs) will affect the weights between PFs and PCs, improving the PC firing response to specific 

PF patterns. In this model CF activity was hypothesized to have a debilitating effect in PF/PC synapses. 

This weakening of active synapses (known as Marr-Albus Model) still remains being the reference 

model of nowadays studies of synaptic plasticity of the cortex. In this model each PC is considered as a 

perceptron whose task is to control an elemental movement. This very first approximation constituted 

the starting point of different cerebellar models where cerebellar plasticity plays a key role. 

 

 

Figure 2.4. Cells in the Marr-Albus model. 
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b. The Cerebellar Model Articulation Controller (CMAC) 

One of the well-known early computational models of the cerebellum is the CMAC: This artificial 

model is based on Marr-Albus [49] [50] conception of the cerebellum, but it was not initially proposed 

as a biological plausible approximation [16]. This model considers MFs to be responsible of the 

discretization of the input values, that means, when a signal on a MF is in the receptive field of a 

particular GrC, it fires onto a PF. The process in which the inputs are “mapped” in binary states 

constituted the working principle of the CMAC. Learning signal is supplied by CFs. CMAC in essence 

consists of a large set of overlapping multidimensional receptive fields with finite boundaries. A local 

receptive fields is activated when an input is presented, the global output is formed by the average of 

the responses of the receptive fields activated by that input. 

The basic idea of CMAC is to store data within a region in such a way where those data can be easily 

recovered and the storage space is minimal, so the CMAC network presents multiple inputs and 

outputs. L1 layer presents the entry variable set  , the entry space is divided in 

segments which are called resolute elements , each entry space has an allowed value range, so each 

analog entry  is quantified and transformed into a discrete value. These new two values will be used to 

generate a memory address. 

In the L2 layer, the previously selected memory address is associated with other memories located in its 

neighborhood. The associative space is constituted when this neighborhood is projected into the 

resolution elements, ,  per each entry . For the same memory address, different memory positions 

can be assigned, each group constituted by this different memory positions is called hyper-cube. The 

value of all the hyper cubes will be modified according to a learning law. 

L3 layer finally is the sum of the value of all the memory positions of the hyper cubes. 
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Figure 2.5. Internal structure in CMAC model (Inspired by [16]). 

 

c. The APG Model. Adjustable Pattern Generator 

Houk and colleagues proposed this model in 1986 [17].  He was convinced from experimental studies 

that movement signals constituted the output of pattern generators in the brain rather than the effect of 

continuous feedback from periphery. In this model, the cerebellum is modeled as an array of adjustable 

pattern generators (APGs), each of which generate a “burst command” with varying intensity and 

duration. APG model operation relies on the same principles of MFs→GrC→PF structure as CMAC 

presents. The state encoder works in the same way, but deep nuclei cells play a fundamental role. Each 

nucleus cell is connected to a motor cell in a positive feedback circuit; a reciprocal relationship between 

Purkinje cell responses and motor commands is established. The generated motor patterns are assumed 

to be under the control of Purkinje cells which are also taken to be the site of learning of the motor 

pattern. The learning rule determines which of the PF→PC synapses will be updated to improve the 

generated movement using training signals derived from sensory information. These training signals are 

conveyed by CFs to direct the adaptation of PF synapses and, after learning, selection of the motor 

patterns initiated by a trigger mechanism is controlled by basket cells. 
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Figure 2.6. Internal structure in APG model. 

 

d. The Schweighofer-Arbib Model 

This model is strongly biologically inspired [19]; it tries to copy biology avoiding the idea of using an 

encoder of different status in granule cells. The model is constrained severely with anatomical data and 

based on the micro-complex hypothesis proposed by Ito (1984). Many assumptions are made: 

 Mossy fibers drive an afferent copy of actual and desire state of the controlled plant. A mossy 

fiber diverges in an average of sixteen branches. 

 GrC has an average of four synapses coming from the MF inputs through a glomerulus. 

 Three Golgi cells synapse on a granule cell through glomeruli, the synaptic strength depends on 

the “geometric” distance between cells. 

 There is no connection between CFs and DCN. 

The learning process relies on the error information given by CFs from the inferior olive (IO).A kind of 

STDP is considered where LTD (long term depression) is supplied when the IO firing rate provides an 
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error signal for a certain synapse. LTP (Long term potentiation) is represented by a slower constant 

increase in synaptic strength when no error signal occurs. 

 

Figure 2.7. Internal structure in Schweighofer-Arbib Model. (Adapted from [47]) 

 

e. The MPFIM Model. Multiple Paired Forward-Inverse Model 

The basic idea of this model conceives the cerebellum containing multiple pairs (modules) of forward 

(predictors) and inverse (controllers) models (MPFIM) [106]. Within each module, the forward and 

inverse model are coupled both during the acquisition and use, in which the forward model determines 

the contribution of each inverse model’s output to the final motor command. This architecture 

simultaneously learns the multiple inverse models necessary for control. This model is based on the 

indirect/direct model approach by Kawato and at the same time the micro-complex theory previously 

described. As previously described, a microzone is a group of PCs and a micro-complex combines these 

PCs with a small group of neurons in a cerebellar or vestibular nucleus. Establishing and analogy, in 

MPFIM a micro-zone is built up by a set of modules which control the same degree of freedom, 

modules whose adaption is controlled by a single climbing fiber. Each module presents three types of 

PCs which compute a forward model, an inverse model or a responsibility predictor, but all of these 

three receive the same input. A single internal model acts as a controller which generates a motor 

command and a predictor which predicts the current state of the plant. Each predictor is a forward 

model of the controlled system, while a controller consists of an inverse model of the system 
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particularized for a specific region. There are also a set of responsibility signals which determines the 

weight contribution that a particular model will make to the overall output of the micro-zone. 

Finally the control motor command consists of the output of the single models adjusted by the sum of 

responsibility signal: and planning. 

elsmodofnumberi;
r

r

i

ii

dForwar                         (1) 

Where Forward the forward motor command, i  is the motor command response of the model i, and 

finally ir  corresponds to the responsibility of model i. 

The PCs are considered to have a linear response, MFs carry all necessary information (state 

information, efference copies of the last motor commands and desired states), GrCs transform the state 

information (even non-linearities) into a rich set of basic functions through PFs. Finally while a CF 

carries a scalar error signal a PF cell encodes a scalar output. Responsibilities, predictions and controller 

outputs are all of them one-dimensional values. 
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Figure 2.8. MPFIM Model. The thick dashed line shows the central role of the responsibility estimators’ signals. Dotted 
lines passing through models are training signals for learning (adapted from [106] ). 

f. The Adaptive Filter Model 

This cerebellar model was firstly proposed by Fujita [107]. Subsequent studies by Dean and Porril 

developed this theory in the last years [108] [109] [110]. 

Adaptive filters are used in cerebellar model functions as a response of Marr-Albus cerebellum theories 

[49] [50]. It was a response coming from control theory towards a better understanding of the 

“obscure” biological control. It was a successful attempt to apply a very well-known field to an 

unexplored/unexploited field [107]. 

Adaptive filters present parameters which can be self-adjusted to modify the output form. The input 

signal is decomposed into component signals by means of a set of filters. Filter set outputs are weighted 

and summed up to obtain the desired output. The self-adjustment is driven by a learning rule consistent 

with the well-known Hebbian covariance rule [111]. The learning rule modifies the weights according to 

the relation between the corresponding component signal and the teaching signal. This is called the 

Analysis-Synthesis filter model proposed by Dean and Porril [108] [110].  The system analyses and 

separates the frequency components of the input signal, correlates these individual components and the 
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system error and is able to synthesize (through local adaptation at the parallel fibers) the appropriate 

filtered responses towards a desired output. 

To establish a comparison between this Analysis-Synthesis filter model and the cerebellar microcircuitry 

the reader is referred to Fig 9 (Adapted from [108]) 

 

 

Figure 2.9. Adaptive Filter. This scheme shows the most relevant connections within a cerebellar module and its relation 
with an adaptive filter. 
A) The cerebellar module presents different connections communicating different circuit elements in closed loops. Mossy 
fibers (MFs) contact granule cells (GrC) and DCN cells which, in turn, receive inhibition from the same common set of 
Purkinje cells (PC). Moreover, the IO cells project climbing fibers that contact PC which also are projected to DCN cells. 
B) Filter inputs correspond to MF firing. These incoming inputs are conveyed by GrC into parallel fibers. The component 
weights act as the synapses made by parallel fibers on PCs. PCs add the component weights signals obtaining the output. 
The correlation between climbing-fiber inputs and parallel fiber climbing is used by the correlation learning law, the 
strength of the synapse is increased if the correlation is negative and it is increased when the correlation is positive (Long 
Term Potentiation/Long Term Depression). 

Climbing fiber and Teaching Signal.  

It is well known that these climbing fibers carry information from various sources (spinal cord, 

vestibular system, red nucleus, sensory and motor cortices…etc). One widely assumed hypothesis is that 

their activation carries motor error signal sent to the cerebellum, and it seems to be also an important 

signal for motor timing but the way in which the error is translated into a climbing fiber signal is still an 

B A 
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open issue [112] [113] [114] [115]. In the very first approach to cerebellum as an adaptive filter made by 

Fujita [107] it was assumed that the climbing fiber response acted as a teaching signal in which its 

variable impulse rate was given by the difference between the output signal and a desired response. The 

weights can be adjusted increasing or decreasing iteratively their values in order to obtain the desired 

output signal, if the correlation between de “error signal” (climbing fiber) and the component weights 

(mimicking the synapses made by parallel fibers on PCs) was positive the weight was increased 

otherwise it was decreased. Fujita proposes an equivalent way to use the error signal learning principle 

as it is the case in the adaptive filter theory. Although this proposal does not consider nowadays 

biological climbing fiber known characteristics, it is an inspiring source which is used in different 

applications [1] [116] [11] (This Fujita approach has been evolved along last decade [108] [110] [109] ). 

Golgi-Granule Scheme 

In order to understand a functional scheme of this theory, different general assumptions have to be 

made: 

a) Golgi cells acts a leaky integrator. According to discharge pattern observations [117],  it is assumed 

that Golgi cells act as temporal filters, with a transfer function given by )Ts1(
k)s(G  , 

that is, a low pass filter in which k > 0, s represents Laplace transform of complex frequency and T 

represents cut-off frequency. That means that Golgi cells, in these models, show an integrator-like 

pattern with a time constant T on the order of several seconds. The corresponding parallel fiber 

signals have a similar response. That means that we obtain a bank of low pass filters that responds 

to a range of frequencies. Their output is convoluted with different weight (PC/PF synapses) 

according to a teaching signal driven by the error; the global response is a sum of different analog 

frequency signals as a response of input stimuli. 

b) Adaptive filter breaks down the input signal into different components (that is supposed to be done 

in granular layer [118] [119]) ensuring a diversification in parallel fiber signals. This diversification is 

a phase diversification; this cerebellum model uses spikes as simple activity carriers. 

c) Identical mossy fiber input signals should hit onto identical Golgi-granule cell areas. This is a 

controversial point. Although in [109] this fact is justified by means of biological records, until 

nowadays, recording granule activity has been a troublesome task, and the debate is opened. There 
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is no a consensus along adaptive filter cerebellum theory [107] [108] [110] [109] on how the mossy 

fibers codification is done. Mossy fiber inputs are treated as a signal given by a “transducer”, 

transmission information spike theory [120] [121] is not taken into account; interspike/intraspike 

distance [122], population neural coding [121] or first spike information [122] are not included in 

the general adaptive filter behavior [123] though some research efforts are being currently done 

[124]. 

Purkinje Cells  

Output signals from Golgi-granule cell are conveyed to PCs. The connection pathways to Purkinje are 

simplified, only the direct synaptic contact PF/PC is represented by a positive synaptic weight and an 

inhibitory interneuron per Purkinje is responsible of the negative synaptic weight. Both contributions 

are summed into a final output. 

g. The Synchronous System Cerebellar Model 

Maex and De Schutter published in 1998, their granular layer simulation model [125] consisting of Golgi 

cells, granule cells and mossy fibers all based in physiological findings. In their model the populations of 

both Golgi and granule cells became entrained in a single synchronous oscillation as a response to 

random mossy fiber stimulation and were robust over different parameters such as synaptic connection 

strengths, mossy fiber firing rates or the spiking propagation speed in parallel fibers. 

Nevertheless, de-synchronization could happen in this implemented network under different 

conditions: 

 Very low mossy fiber input activity. A very low activity rate at mossy fibers (and therefore at the 

GrCs) generates almost no excitation at the GoCs, and in this way, the synchronization path 

(GrC → GoC →GrC) is disabled. 

 Strong dominant excitation of Golgi cells through mossy fiber synapses (in relation   to parallel 

fiber synapses). This MFs → GoCs activity destabilizes the synchronism in the granule cells. 

 Tonic activation of GrC inhibition [126] decrements the level of average activity in GrC. Thus, 

the synchronization elements (the Golgi cells) remain nearly inactive and do not produce such 

synchronism. 

S. Solinas in 2010 [127] evolved this cerebellar model solving all the established restrictions because of 

the simulation capabilities in 1998. This evolved model simulates a more realistic large-scale model of 
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the cerebellar granular layer and verifies some spatio-temporal filtering properties founded in 

physiological studies. This model implements the main granular layer properties which make the 

cerebellum being such an important part of the nervous system. 

The main weakness that this model presents is that it has not been clarified how the properties which 

the implemented granular layer has, can be efficiently used for a functional signal processing and how 

these properties can solve specific problems in a relevant task framework such as movement correction 

or eye blink conditioning. 

h. The Yamazaki and Tanaka Cerebellar Model (Liquid State 

Machine) 

This model assumes that the cerebellum generates activity patterns without temporal recurrence 

representing the passage of time [128]. The granular layer acts as an event-driven internal clock triggered 

by an initial activity pattern. Each time step can be represented with combinations of active granule 

cells. 

According to that point of view, the cerebellum can be interpreted as a liquid state machine. The 

presentation of finite sequences of active neuron populations without recurrence as the response to 

different combinations of binary inputs can be compared to a liquid state machine [129] with high 

power of information processing. 

Neuro-physiological findings support the hypothesis that the neural clock could be implemented by the 

inhibitory loop composed of GrCs and GoCs s [130]. That is, GrCs would excite GoCs (through PFs) 

thanks to their input stimuli, and subsequently, these GoCss would inhibit some of the granule cells, 

thus obtaining the transition between active and inactive states and therefore representing the passage 

of time. 

One of the main critics that this model could have is related to its application field. This simple model 

has been successfully applied to eye blink conditioning problem. By contrast, this model has never been 

put into practice in more difficult scenarios such as coordination of body-movements where the 

cerebellum is involved. 

The eye blink conditioning solution should correlate the inter-stimulus interval and the unconditional 

stimulus, but, in this problem, the cerebellar output, supplied by the deep cerebellar nuclei cells (DCN) 

presents just two different states; active DCN (closed eyelid) or inactive DCN  (open eyelid). In other 

motor tasks (i.e. target reaching or fast ballistic movements) a continuous error correction in time is 

mandatory in order to execute properly the desired planned movement, that is, DCN output must be 
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more than just a bi-stable output, DCN output has to supply as many temporal states as the temporal 

correction demands. 

Summarizing, this model proposes a cerebellar architecture composed of two different sub-circuits. The 

first one (where GrCs, GoCs and MFs are located) represents a liquid state machine, and generates non 

recurrent sequences of activity. The second one (where MFs and cerebellar nucleus cells are located) 

represents a simple perceptron. This cerebellar architecture receives a teaching signal from the inferior 

olive. 

9. Discussion and Comparison 

Summing up, the presented models can be categorized as follows: 

 State-encoder-driven models: These kinds of models present a granule cell layer where on/off 

types of entities are located. These on/off entities divide the state space (Marr-Albus Model, 

CMAC model, APG model or Yamazaki and Tanaka).These models fit well in simple function 

approximations, and suffer strongly from the curse of dimensionality. 

 Functional models: these models have been developed based on the functionality that the 

cerebellar architecture seems to possess. These models just take into account the functional 

understanding of the cells. In this case, it is obtained only a basic insight into the functions of 

the parts and finally it is applied as a crude approximation (MPFIM model, Adaptive Filter 

model or APG model). This kind of approximation derive from an engineering point of view 

and can solve most of the tasks that the cerebellum seems to perform, such as the eye blink 

conditioning or the movement correction, but in contrast, the lack of realistic implementations, 

and the suppositions that these models assume with little neuro-finding backup make these 

models not be still well established among the neurophysiology community. 

 Cellular-level models: Obviously, the most realistic simulations would be at the cellular level. 

Although these models fully fit from a neuro-physiological point of view, yet their application 

in the context of a whole cerebellum model and the modeling and computing of just only a few 

Purkinje /Granular/ Mossy Fibers/Golgi / Inferior Olive/ Deep Cerebellar Nuclei cells at 

realistic conditions, remains unclear. Still, from the biological point of view these kinds of 

models are the most important since they allow obtaining insight into cerebellar function at 

cellular level. The first steps in this direction were taken by the Schweighofer–Arbib model (e.g. 

Synchronous System Cerebellar Model and Scheweighofer-Arbib model [19] [46] [47]). 
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The contribution of this work is also related to this level of detail but keeping in mind the 

cerebellar functionality in a manipulation task scenario that the proposed models must present.  

For a further overview the reader is referred to [1] [11] [12] [13] [14] [131] 

 

In this thesis contextualization chapter, it is demonstrated the importance of 

multidisciplinary studies where both neurophysiologists and engineers are involved. 

Neurophysiologists have studied and proposed very detailed models according to physiological 

findings; however actual modeled physiological systems are usually not ready to carry out complex 

and specific tasks at a system level.  By contrast, engineers have proposed machine-like systems that 

try to solve particular biological problems assuming an engineered point of view. 

Thus, both, neurophysiologists and system engineers need to work shoulder to shoulder towards a 

perfect understanding of how specific problems are solved using biologically plausible 

computational principles. 

 

SpikeFORCE, SENSOPAC and REALNET are European projects (FP5, FP6 and FP7) in which 

our research group has been involved during more than a decade (and it is still involved) where the 

understanding of the relationship between neuroscience, computational neuroscience and classical 

control theory has represented and represents the philosopher's stone of our research. 
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D i s c u s s i o n  a n d  C o n c l u s i o n s  

This chapter shows a summary of the main contributions of the presented work as well as future lines 

of work raised from the proposal work made in this memory. Finally a brief resume of the obtained 

researched results in terms of international conferences and scientific journals is included. 

I. DISCUSSION 

 As a first step, this thesis (chapter 4 section 1) presents how a simple spiking cerebellum-like 

architecture can infer corrective models in the framework of a motor control task when 

manipulating objects that significantly affect the dynamics model of the base robotic system. This 

initial approximation evaluates a simplified bio-mimetic approach during a manipulation task. It 

focuses on how the model inference is carried out by a cerebellar module within a forward control 

loop and on how these inferred internal models are built up by means of biologically plausible 

synaptic adaptation mechanisms. A basic temporal-correlation kernel including a specific long-term 

depression (LTD) and a non-specific long-term potentiation (LTP) at parallel fiber-Purkinje cell 

synapses can effectively infer corrective models. It is also evaluated how this spike-timing-

dependent plasticity correlates sensorimotor activity arriving through the parallel fibers with 

teaching signals (dependent on error estimates) arriving through the climbing fibers from the 

inferior olive. This first approximation to a functional bio-inspired cerebellar model brought some 

light about how these LTD and LTP components need to be well balanced with each other to 

achieve accurate learning. Furthermore, it is illustrated how the temporal-correlation kernel (used 

for the LTD computation) can also work in the presence of transmission delays in sensorimotor 

pathways. 

This kind of investigations may provide clues on how biology achieves accurate control of non-

stiff-joint robot with low-power actuators which involve controlling systems with high inertial 

components. 

The associated journal article to this point is: 
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N. R. Luque, J. A. Garrido, R. R. Carrillo, O. J. M. D. Coenen, E. Ros, “ Cerebellar-like Corrective 

Model Inference Engine for Manipulation Tasks ”, IEEE Transactions on Systems, Man, and 

Cybernetics, Part B: Cybernetics, 41(5), 2011. 

 Secondly this thesis (chapter 4 section 2) evaluates a way in which a spiking cerebellar-like structure 

(an evolution of the previous model) can store a model in the granular-molecular layers. As it was 

explained in contextualization chapter  the cerebellum is assumed to be one of the main nervous 

centers involved in correcting and refining planned movement and accounting for disturbances 

occurring during the movement, for instance due to the manipulation of objects which affect the 

kinematics and dynamics of the robot-arm plant model, so it is interesting to study not only the 

molecular layer storage capability but also how the cerebellar microstructure and its input 

representations (context labels and sensor signals) can efficiently support model abstraction towards 

delivering accurate corrective torques for increasing precision during different-object manipulation. 

This work also described how the explicit (object-related input labels) and implicit state input 

representations (sensory signals) complement each other to better handle different models allowing 

interpolation between two already stored models. This facilitates accurate corrections during 

manipulations of new objects taking advantage of already stored models. 

The associated journal article to this point is: 

N. R. Luque, J. A. Garrido, R. R. Carrillo, O. J. M. D. Coenen, E. Ros, “Cerebellar Input 

Configuration Toward Object Model Abstraction in Manipulation Tasks”. IEEE Transaction on 

Neural Networks, 22(8), 1321-1328, 2011. 

 As a natural evolution of this thesis, the next step focuses on evaluating the capability of the 

previously developed spiking cerebellar model when it is embedded in different loop architectures 

(recurrent, forward, and recurrent & forward architectures) to control a robotic arm (chapter 4 

section 3). The implemented spiking network self-adapts and copes with perturbations in a 

manipulation scenario: changes in dynamics and kinematics of the simulated robot. Furthermore, 

the effect of several degrees of noise in the cerebellar input pathway (mossy fibers) was assessed 

depending on the employed control architecture. The implemented cerebellar model managed to 

adapt in the three control architectures to different dynamics and kinematics providing corrective 

actions for more accurate movements. However, according to the obtained results, coupling both 
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control architectures (recurrent & forward) provides benefits of the two of them and leads to a 

higher robustness against noise. 

The associated journal article to this point is: 

N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu, E. Ros, Adaptive Cerebellar Spiking Model 

Embedded In The Control Loop: “Context Switching And Robustness Against Noise”, Int. Journal 

of Neural Systems, 21(5), pp. 385-401, 2011. 

 Once the primary cerebellar architecture and control loop is settled, it is time to evolve the achieved 

system according to not only an engineered point of view (machine-like systems that try to solve 

particular biological problems) but also taking into account  physiological findings (chapter 4 

section 4). As it was shown in contextualization chapter, in biological systems, instead of actual 

encoders at different joints, proprioception signals are acquired through distributed receptive fields. 

In robotics, a single and accurate sensor output per link (encoder) is commonly used to track the 

position and the velocity. Interfacing bio-inspired control systems with spiking neural networks 

emulating the cerebellum with conventional robots is not a straight forward task. Therefore it is 

necessary to adapt this one-dimensional measure (encoder output) into a multidimensional space 

(inputs of a spiking neural network) to connect, for instance, the spiking cerebellar architecture; i.e. 

a translation from an analog space into a distributed population coding in spike space. In this 

subsection it is analyzed how evolved receptive fields (optimized towards information transmission) 

can efficiently generate a sensori-motor representation that facilitates its discrimination from other 

“sensori-motor” states. This can be seen as an abstraction of the Cuneate Nucleus (CN) 

functionality in a robot-arm scenario. The CN is modeled as a spiking neuron population coding in 

time according to the response of realistic mechanoreceptors during a multi-joint movement in a 

robot joint space. An encoding scheme that takes into account the relative spiking time of the 

signals propagating from peripheral nerve fibers to second-order somatosensory neurons is 

proposed. Following the nature-inspired analogy, evolved configurations have shown to 

outperform simple hand-tuned configurations and other homogenized configurations based on the 

solution provided by the optimization engine (genetic algorithm). 

The associated journal article to this point is: 
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Luque, N. R.; Garrido, J. A.; Ralli, J.; Laredo, J. J.; Ros, E.: “From Sensors to Spikes: Evolving 

Receptive Fields to Enhance Sensory Motor Information in a Robot-Arm Scenario".  Int. Journal of 

Neural Systems, 22(4), pp. 0-20, 2012. 

II. ALL ASSOCIATED PUBLICATION WITH THIS THESIS 

The developed research has been done in the framework of two European projects; REALNET (IST-

270434)/SENSOPAC (IST-028056) where different challenges have been addressed from different 

perspectives through synergies between neurophysiologists and engineers from different fields. This 

work has been evaluated in a framework of international conferences and scientific journals (with 

impact factor IF on JCR). 

1. International Peer-review Journals 

1. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Coenen, O. J. M. D.; Ros, E: “Cerebellar-like 

corrective-model abstraction engine for robot movement control”. IEEE Transaction on system, man, 

and cybernetics - Part B: Cybernetics, 41(5), 2011. Impact Factor (JCR 2011): 3.080. Quartile Q1 in 

categories: Automation & Control Systems, Computer Science,  Artificial Intelligence and 

Computer Science, Cybernetics 

2. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Coenen, O. J. M. D.; Ros, E: “Cerebellar input 

configuration towards object model abstraction in manipulation Tasks”. IEEE transaction on neural 

networks, 22(8), 1321-1328, 2011.  Impact Factor (JCR 2011): 2.952.  Quartile Q1 in categories: 

Computer Science, Artificial Intelligence, Computer Science, Hardware & Architecture. 

Computer Science, Theory & Methods and Engineering, Electrical & Electronic. 

3. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Tolu, S.; Ros, E.: “Adaptive cerebellar spiking model 

in a bio-inspired robot-control loop”. International Journal on Neural Systems, 21(5), 385-401, 2011. 

Impact Factor (JCR 2011): 4.284. Quartile Q1 in category: Computer Science, Artificial 

Intelligence. 
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4. Luque, N. R*.; Garrido, J. A*.; Ralli, J.; Laredo, J. J.; Ros, E.: “From Sensors to Spikes: Evolving 

Receptive Fields to Enhance Sensory Motor Information in a Robot-Arm Scenario". International 

Journal on Neural Systems, 22(4), 1-20, 2012. Impact Factor (JCR 2011): 4.284. Quartile Q1 in 

category: Computer Science, Artificial Intelligence. 

*Both authors contributed equally to this work 

5. Tolu, S.; Vanegas, M.; Luque, N. R.; Garrido, J. A.; Ros, E.: “Bio-Inspired Adaptive Feedback 

Error Learning Architecture for Motor Control". Biological Cybernetics, 106(8-9), 507-522, 2012. 

Impact Factor (JCR 2011): 1.586. Quartile Q1 in category: Computer Science, Cybernetics. 

Quartile Q4 in category: Neuroscience. 

6. Tolu, S.; Vanegas, M.; Garrido, J. A.; Luque, N. R.; Ros, E.: “Adaptive and Predictive Control of a 

Simulated Robot Arm” International Journal on Neural Systems, Accepted for publication. Impact 

Factor (JCR 2011): 4.284. Quartile Q1 in category: Computer Science, Artificial Intelligence. 

2. International Peer-review Proceedings 

1. Passot, J. B.; Luque, N. R.; Arleo, A.: “Internal models in the cerebellum: a coupling scheme for 

online and offline learning in procedural tasks”. International Conference on Simulation of 

Adaptive Behavior, (SAB 2010). In Doncieux, S. et al., editors, LNAI Simulation of Adaptive 

Behavior, vol. 6226, pp 435-446, Springer-Verlag, (2010). 

2. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Ros, E.: “Cerebellar spiking engine: Towards object 

model abstraction in manipulation”. International Joint Conference on Neural Networks (IJCNN 

2010). 

3. Garrido, J. A.; Carrillo, R. R.; Luque, N. R.; Ros, E.: “Event and time driven hybrid simulation of 

spiking neural networks”. International Work-Conference on Artificial Neural Networks (IWANN 

2011). Advances in Computational Intelligence. Lecture Notes in Computer Science, 6691, pp. 554-

561. Springer, Heidelberg (2011). 

4. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Ros, E.: “A spiking cerebellum model in a multi-

context robot control scenario for studying the granular layer functional role”. International Work-
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Conference on Artificial Neural Networks (IWANN 2011). Advances in Computational 

Intelligence. Lecture Notes in Computer Science, 6691, pp. 537-546. Springer, Heidelberg (2011). 

5. Casellato, C.; Pedrocchi, A.; Garrido, J. A; Luque, N. R.; Ferrigno, G.; D'Angelo, E.; Ros, E.: “An 

integrated motor control loop of a human-like robotic arm: Feedforward, feedback and cerebellum-

based learning”. International Conference on Biomedical Robotics and Biomechatronics (BioRob), 

2012 4th IEEE RAS\& EMBS .pp. 562-567(2012). 

6. Garrido, J.A*.; Luque, N.R*.; D'Angelo, E.; Ros, E.; “Enhancing learning precision at parallel 

fiber-Purkinje cell connections through deep cerebellar nuclei LTD and LTP”. Federation of 

European Neurosciences (FENS2012) (2012).* Both authors contributed equally to this work 

III. SCIENTIFIC FRAMEWORK 

This thesis has been developed in the framework of two European Projects: 

 SENSOPAC (SENSOrimotor structuring of Perception and Action for emergent Cognition (FP6-

IST-028056)) 

 REALNET (Realistic Real-time Networks: computation dynamics in the cerebellum (FP7-IST-

270434)). 

This fact has provided the perfect scenario to our research group for collaborating with different 

research groups at other European Universities and research institutions. The presented work 

represents just a part of the whole contribution the University of Granada has done in this two 

SENSOPAC/REALNET consortiums.  In this scenario, the aims to be reached make a 

multidisciplinary approach mandatory. 

This work mainly presents different results from a biological system point of view however this work 

involves other knowledge areas. Dealing with robotic systems using biological findings or implementing 

and evolving a realistic neural network simulator capable of running in different environments (task 

mostly developed by Jesús Alberto Garrido) are just a pair of examples of how difficult the research 

process was. It would not be fair to avoid the fact that all this effort has required a high collaborative 

and coordinated work with the working team. 
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IV. MAIN CONTRIBUTIONS 

 A biologically relevant cerebellar model (embedded in a forward control loop with a crude 

inverse dynamics module) has been evolved and implemented. This model can effectively 

provide corrective torque to compensate deviations in the dynamics of a base plant model. 

 It has been evaluated how a temporal-correlation kernel driving a specific error-related LTD 

and a compensatory non-specific LTP component (complementing each other) can achieve 

effective adaptation of the corrective cerebellar output.  Both LTD and LTP need to be 

balanced with each other to achieve high performance adaptation capabilities and effective 

reduction of error in manipulation tasks with objects which significantly affect the dynamics of 

the base arm plant. 

 In addition it has been studied how a temporal-correlation kernel can work even in the 

presence of sensorimotor delays. This cerebellar structure can adaptively generate any suitable 

output for each trajectory point codification; the delay of the sensorimotor pathways is not 

remarkably relevant. 

 An evaluation of the input sensory signal influence over an evolved cerebellum architecture is 

presented (The granular layer is now added). Two input representations, context-related inputs 

(EC), and only actual sensory robot signals (IC) encoding the state during the experiments have 

been studied. The IC&EC cerebellar configuration takes advantage of both kinds of signals 

providing smoother inter-context transitions at a fast convergence speed, allowing the 

interpolation of new contexts based on previously acquired models and overcoming misleading 

external contextual information, thus making this cerebellar configuration robust against 

incongruent representations. 

 This cerebellar architecture has been evaluated in different control loops (RR, FD, and 

FD&RR) in several noisy scenarios. The obtained results indicate that coupling both control 

loop architectures (FD&RR) leads to faster learning convergence, better accuracy gain and 

improved output stability in a noisy scenario. 
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 Moreover, it has been demonstrated that this (FD&RR) control architecture in context 

switching has the capability of inferring and storing different corrective models simultaneously 

under dynamic/kinematic modifications better than FD or RR configurations on their own. 

This proposed architecture is compatible with several neurophysiological findings. 

 Finally, a general methodology (by means of using genetic algorithms) for efficiently 

representing joint encoder signals into spike patterns in a plausible robot scenario is presented. 

These contributions covers the thesis objectives presented in the first chapter as follows: the first 

three points of this contribution section deal with the first objective. The next point corresponds to 

the second listed objective. The two last but one contribution points address the third objective. 

And the last contribution point corresponds to the last objective. 

V. FUTURE WORK 

As a future work there are two main research lines to be followed. On one hand it is necessary to evolve 

the whole cerebellar model in the framework of a control task by taking advantage of a larger number 

of biological processing characteristics of neurons and networks. Although there is not a straight 

connection between these neurophysiological properties and its final application in a particular control 

task scenario, the study of how these findings could improve a plausible cerebellar model requires a lot 

of research effort. It is mandatory to build a bridge between these apparently unrelated fields to better 

understand the architectural/functional/biological principles in the cerebellum. The inclusion of 

synaptic plasticity at most of the cerebellar synapses (as experimental studies have shown the existence 

of these mechanisms) will be our first step in this promising way. Achieving this distributed learning 

involves a powerful biological plausible control tool that automatically configures itself to match the 

surrounding environment just and to obtain the best possible performance. Adaptation mechanisms in 

connections such as MF→DCN or PC→DCN, together with the very well-known plasticity between 

GrC→PF→PC has been proven recently to have a strong impact in the learning consolidation [132]. 

It is also of high interest the IO→DCN connection; a biologically plausible Feedback Error Learning 

reinterpretation constitutes a prior research aim. This connection could play a key role to understand 

how a fast biological control in a real scenario could be possible without a classical PID controller (or 
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other classical controller strategies belonging to this control field) as functional approximations use such 

as CMAC, MPIM, LWPR or Fujita cerebellar inspired models. 

More related with neural characteristics, an evolution of the granular layer with lateral inhibition in its 

neurons constitutes our incoming goal. By taking full advantage of this new feature, a better codification 

of input patterns will allow a better precision in terms of discrimination. 

The second research line is related with the manipulation task. We are working on connecting the entire 

developed networks not just to a simulator but also to a real robot. We have to develop the way to 

interface in real time our cerebellar model with the real robot; we have to re-implement physical 

controllers which are able to modify point by point their actuation. We have to develop a methodology 

to validate different cerebellar model proposals in a manipulation task in terms of stability since classical 

mathematical tests such as Lyapunov stability test, Routh-Hurwitz criterion, Nyquist stability criterion 

etc do not fit well in these spiking cerebellar neural networks. Spiking cerebellar neural networks present 

an overwhelming dimensionality and complexity on the contrary classical mathematical tests   are 

commonly applied to problems with lower levels of complexity and dimensionality where a perfect 

knowledge of the system is available. Indeed, when applying these classical mathematical tests, every 

single behavior is well known and restricted to certain boundaries where the whole system behaves 

deterministically and the computational test can be accomplished. These requirements are not available 

in a spiking neural network because of its own nature. 

All these issues will be addressed in a recently started EU project (REALNET (IST-270434)).  
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I n t r o d u c c i ó n  e n  C a s t e l l a n o  

A día de hoy realizar una asociación entre cerebelo y diferentes características de control motor humano 

no es una asunción descabellada. De hecho, es de conocimiento general que el cerebelo desarrolla un rol 

fundamental en el control de movimientos rápidos y precisos. [1] [2] [3] [4]; El cerebelo es responsable 

de supervisar los llamados movimientos balísticos (movimientos extremadamente rápidos), siendo 

capaz de establecer la duración de dichos movimientos por adelantado (dirigiendo sus secuenciaciones 

temporales) y  suministrando aquellos pares correctivos necesarios para su correcta ejecución [6] [7]. 

Todas estas características de secuenciación y control son llevadas a cabo correctamente gracias a la 

existencia de los diferentes mecanismos de realimentación presentes a lo largo de la estructura cerebelar 

[8] [9].  Haciendo uso de dichas estructuras de realimentación, el cerebelo es capaz de generar  cierta 

elasticidad muscular en diferentes movimientos, ayudando así al sistema nervioso central a predecir el 

movimiento de cada una de las partes constitutivas de nuestro cuerpo [10]. Esta panoplia de 

características presentes en el cerebelo entroncan bien en el campo de la teoría de control y más 

concretamente en el campo de la robótica, en  donde el cerebelo podría utilizarse como un controlador 

biológicamente plausible que pudiera orquestar apropiadamente la actividad motora del robot a 

controlar. [11] [12] [13] [14] [15] [16] [17] [18] [19]. 

Si bien, la relación existente entre el cerebelo y diferentes tipos de aprendizaje motor no es un campo 

del todo conocido con absoluta certeza, aún lo es menos la implicación del mismo en lo que es llamado  

“funciones de alto nivel” [20] [21]. A mediados de los ochenta, algunos descubrimientos experimentales 

en distintos campos de investigación empezaron a mostrar que el cerebelo no solo estaba implicado en 

tareas no motoras sino que también en la cognición espacial del individuo [22] [23] [24]. Los estudios de 

neuro-imagen han mostrado la activación del cerebelo en distintos procesos cognitivos tales como: 

generación de palabras [25], compresión y procesamiento semántico [26] [27], reconocimiento verbal y 

no verbal [28], memoria verbal inmediata [29], planificación cognitiva [30], imaginación motora [30], 

adquisición sensorial y discriminación [31] o atención cognitiva [32]. Por otro lado, también se han 

obtenido distintas evidencias de estos procesos cognitivos en distintos pacientes con lesiones focales 

[33] [34]: alteraciones en la velocidad de procesamiento en movimientos espaciales complejos y 

planificación operacional de tareas, generación de palabras en relación a una consigna, planificación y 

flexibilidad en razonamiento abstracto, memoria operativa o percepción y temporización motora. De 
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igual forma también se han observado cambios de personalidad, agratismo, disprosodia y dificultades 

ante cambios rápidos y precisos para llamar la atención. 

Resulta pues evidente que durante la pasada década se han descubierto un conjunto importante de 

evidencias que reflejan el hecho de que el cerebelo está implicado en ciertas funciones cognitivas, sin 

embargo algunos investigadores presentan  cierta actitud escéptica antes tales afirmaciones debido al 

hecho de que los experimentos llevados a cabo para demostrar estas implicaciones no están libres de 

toda duda [35] [36]. La activación cerebellar en ciertas tareas no permite asegurar directamente  un rol 

fundamental del cerebelo en el proceso cognitivo bajo estudio debido a diferentes causas: los resultados 

clínicos presentan inconsistencias y contradicciones, no es fácil controlar los efectos de los problemas 

motores, las tareas son complejas y los déficits observados son difíciles de interpretar...etc. De cualquier 

manera, podemos asegurar que estamos ante uno de los campos de investigación más notables en 

neurofisiología. 

Por lo tanto, teniendo en cuenta el comportamiento multitarea que el cerebelo presenta, y considerando: 

• Que la organización sináptica uniforme que presenta el córtex  cerebelar sugiere que tanto las 

funciones motores como cognitivas del mismo pudieran ser emuladas mediante los mismo 

principios computacionales. 

• Y que un control robótico biológicamente plausible parece ser un buen candidato con el que 

trabajar para arrojar algo de luz sobre la funcionalidad cerebellar. 

Es posible afirmar que una combinación de ambos campos (principios computacionales cerebelares y 

teoría de control) debería poder suministrar una herramienta útil para entender la funcionalidad 

cerebellar y cómo esta es llevada a cabo por los circuitos nerviosos. Estos dos puntos constituyen los 

pilares de esta tesis y serán desarrollados a lo largo de las siguientes secciones. 

Como conclusión podemos afirmar que el principal objetivo de esta tesis consiste en progresar hacia la 

adquisición de un mejor conocimiento de los roles funcionales que el cerebelo presenta, bien sea en los 

procesos cognitivos motores, bien en los procesos espaciales, así como explorar el conjunto de 

fundamentos y reglas computacionales que nos permitan inferir el cómo dichos procesos pudieren 

establecerse en el cerebelo 
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I. EL PORQUÉ ES FUNDAMENTAL EL ESTUDIO DEL 

CEREBELO 

El cerebelo es una región del cerebro que desempeña un papel relevante en el control motor. Dicho 

cerebelo además se encuentra relacionado con algunas funciones cognitivas tales como atención y 

lenguaje y probablemente algunas funciones de carácter emocional como  fue previamente expuesto 

[41]. 

El cerebelo está inserto en un bucle de control motor que posibilita el ajuste del movimiento muscular 

[42] [43].  Cuando el córtex envía un comando motor hacia las neuronas motoras inferiores en el tronco 

encefálico y hacia la espina dorsal, a la misma vez se dirige una copia de esta información  hacia el 

cerebelo. Concretamente, esta información motora se transporta desde las fibras piramidales en el 

córtex, en el tracto cortico-pontino-cerebelar, hacia el cerebelo. Junto a esta información motora, la 

información postural procedente de músculos, articulaciones y tendones alcanza también al cerebelo. 

[45]. Esta información permite al cerebelo determinar como de bien los comandos motores generados 

desde el córtex lo están haciendo y a su vez coordinar la actividad muscular para conseguir movimientos 

armoniosos y suaves mediante su conexión con los sistemas piramidales y extra piramidales y la 

formación reticular descendente [46] [47]. La principal consecuencia de este rol en la coordinación 

motora de movimientos precisos radica en el hecho de que el cerebelo pueda realizar una contribución 

importante en el control de movimientos musculares rápidos y alternos necesarios para obtener cierta 

velocidad. 

El cerebro humano posee (estimado) unas cien mil millones de neuronas. Algunas fuentes defienden 

que el número ronda entre 10 and 100 mil millones [37] [38] ocupando el cerebelo sólo un 10% del 

volumen total del cerebro y poseyendo una estimación próxima al 50% de todas las neuronas del 

cerebro [39]. El cerebelo se muestra como una estructura independiente unida justo a la parte inferior 

del cerebro, localizado bajo los hemisferios cerebrales. Está revestido por una lámina intrincada de 

tejido llamada  corteza cerebelosa, que contiene casi todas sus neuronas, donde las células de Purkinje y 

granulares resultan ser las de mayor relevancia [37] [39]. Tal cantidad de neuronas e interconexiones 

dotan al cerebelo de  una gran capacidad de procesamiento de señales [40] (aun a pesar de que la 

mayoría de las salidas cerebelares se dirigen hacia un conjunto reducido  de núcleos cerebelosos 

profundos localizados en el interior del cerebelo). Además, el cerebelo no sólo se ve implicado en el 

control motor, sino también está relacionado con varios tipos de aprendizaje motor, siendo el más 

relevante de ellos, el aprendizaje del ajuste a realizar sobre las primitivas sensoriomotoras [48]. A lo largo 
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de las últimas décadas se ha realizado un enorme esfuerzo en la construcción de modelos cerebelares 

teóricos para tratar de explicar dicho ajuste sensoriomotor en términos de plasticidad sináptica en el 

cerebelo (para una revisión más profunda se remite al lector al capítulo 2, sección 4). La mayoría de los 

modelos teóricos se basan en los primeros modelos formulados por Marr-Albus [49] [50], en donde 

cada célula Purkinje recibe dos tipos de entrada radicalmente diferentes: por un lado, miles de entradas 

provenientes de las fibras paralelas, cada una de ella individualmente muy débil, y por otro lado, la 

entrada de una sola fibra trepadora , que es, sin embargo, de acción tan fuerte que su actuación es capaz 

de dirigir la actividad de su célula Purkinje objetivo pudiendo ser artífice del disparo de un potencial de 

acción complejo. El concepto básico de la teoría de Marr-Albus reside en el hecho de que la fibra 

trepadora hace las veces de  "señal de aprendizaje" [51],  capaz de inducir un cambio a largo plazo en la 

eficacia sináptica de las fibras paralelas (actuando como entrada) que son activadas sincronizadamente 

[52]. Observaciones de (LTD) depresión a largo plazo en las fibras paralelas (reducción de la eficacia de 

la sinapsis neuronal.) son las principales artífices de la aparición de teorías de este tipo, sin embargo la 

validez de las mismas sigue siendo fuente de debate [53]. 

Se ha implementado y desarrollado un modelo teórico del cerebelo basado en una red neuronal de 

impulsos a lo largo de esta tesis. Dicho modelo y su evolución se desarrolla  a lo largo de los artículos en 

revistas incluidos. 

II. EL CEREBELO EN EL CONTROL MOTOR 

Los sistemas de control biológico (los cuales son capaces de controlar sistemas biológicos no rígidos, 

tales como son las articulaciones superiores humanas) han evolucionado durante años convirtiéndose 

por derecho propio en un paradigma a seguir por los controladores robóticos actuales [54]. Se sabe que 

el cerebelo está implicado de alguna manera en la generación y aprendizaje de movimientos coordinados 

con cierta gracilidad [6]. Resulta por tanto evidente que, un conocimiento preciso y profundo sobre el  

cómo ésta avanzada máquina de control funciona, debería ser de ayuda en el proceso de control de 

robots biomorficos. 

El brazo humano, entendido como manipulador mecánico, está compuesto por elementos rígidos; los 

huesos, los cuales están unidos con juntas flexibles (articulaciones), cuya flexibilidad se modifica en 

relación con el objeto a ser manipulado. Tanto huesos como uniones flexibles se encuentran articuladas 

por los músculos, músculos que actúan como efectores de alto rendimiento (poseen una alta relación 
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fuerza/masa). Estos efectores producen una contracción al recibir un estímulo nervioso, y se disponen 

en pares opuestos con el fin de permitir movimientos rotacionales bidireccionales en cada una de las 

articulaciones [55]. 

Todo el conjunto brazo-antebrazo-mano no posee una precisión mecánica  extremadamente buena, por 

el contrario, sí que presenta una extraordinaria movilidad (27 grados de libertad en total donde cada 

dedo presenta 4 grados de libertad; 3 para extensión-flexión y 1 para abducción y aducción. El pulgar es 

un poco más complejo poseyendo 5 grados de libertad, quedando 6 grados de libertad para la rotación y 

traslación de la muñeca [56] más los 7 grados de libertad [57] del brazo) y una gran cantidad de sensores 

de esfuerzo para compensar esta falta de precisión ayudando así en las tareas de control. Nuestra gran 

capacidad de manipulación es consecuencia directa de la actuación del cerebelo como sistema de control 

capaz de desarrollar tareas de todo complejas con resultados hoy día inalcanzables por cualquier otro 

sistema de control actual. 

En un escenario donde un sensor biológico detecta un contacto mecánico, el retardo de trasmisión del 

impulso generado desde el contacto del dedo con cualquier superficie hasta el córtex cerebellar está en 

torno a los 70ms, esto implica que, el ciclo de control presenta un retardo entre 100-150ms [58] (De 

hecho, los ciclos de control industriales no toleran este tipo de retardos en los canales de comunicación) 

[59]. Estos retardos en el canal de comunicación implican que nuestro brazo humano no es capaz de 

desarrollar tareas de contacto que requieran correcciones de pares con frecuencias mayores de entre 6 a 

10 veces por segundo (entre unos 100-150ms de retardo). La respuesta a eventos de mayor rapidez se ve 

normalmente atenuada por la mano, sin embargo, cuando el contacto acaece con un elemento rígido del 

brazo, como pueda ser el puño,  el error cometido resultante es alto [60]. 

Por lo tanto, la pregunta sería, ¿Cómo son capaces los seres humanos de desarrollar una extraordinaria 

habilidad manual cuando interaccionan en distintos escenarios? De hecho, el brazo (contacto prior), 

presenta una cierta rigidez modulada por los músculos. La activación simultanea del par de músculos 

complementarios permite aumentar la rigidez articular. Por ejemplo el codo puede incrementar su 

rigidez en un ratio de 200 a 1 [60], mediante la utilización del bíceps y el  tríceps. La rigidez adecuada del 

brazo viene dada a priori por el conocimiento previo de la tarea a realizar; acto seguido, esta rigidez se 

modifica antes del contacto (antes de cometer un error los músculos modifican de nuevo la rigidez sin 

que el cerebro esté permanentemente implicado en esta acción) para así optimizar la tarea a realizar en 

términos de parámetros específicos de la propia tarea (posición, velocidad, aceleración, torques… etc). 
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A lo largo de esta tesis, se asume que los pares de músculos agonista-antagonistas son capaces de 

modificar la rigidez final del brazo, sin embargo desde un punto de vista más global, aquello que se 

modifica no es la rigidez  en sí misma, sino la impedancia mecánica del brazo. En un escenario de 

control sencillo, podemos considerar que la impedancia del brazo tiene tres parámetros por grado de 

libertad: rigidez, masa y amortiguamiento. Por lo tanto, esta impedancia establece las relaciones estáticas 

y dinámicas entre fuerza y movimiento. 

Está claro por tanto que una implementación de un control que modifica la impedancia mecánica del 

robot permitiría una aproximación más humana al comportamiento del brazo robótico. Con dicho 

objetivo, la tesis que aquí se presenta, ha evolucionado un controlador biológicamente plausible (ver 

sección anterior) embebido en un ciclo de control robótico, donde se trata de mimetizar la acción que 

un controlador motor biológico realiza sobre, por ejemplo, el brazo humano. 

III. MOTIVACIÓN 

La arquitectura cerebellar ha sido objeto de estudio durante más de un siglo, sin embargo su rol 

funcional y cognitivo aún sigue siendo un tema bajo estudio [21] [61].  Es bien sabido que el cerebelo 

juega un rol importante en el control motor, realizando una labor fundamental en la coordinación, 

precisión y temporización de movimientos primarios [62]. El cerebelo recibe entradas desde el sistema 

sensorial, de otras partes del cerebro y la espina dorsal, y las integra con los comandos motores para 

modular la actividad motora [46] [47]. Consecuentemente, tanto para explotar y clarificar cómo el 

cerebelo computa la información  como para probar distintas hipótesis sobre su modo de operación, 

parece ser que las simulaciones del circuito nervioso central son la herramienta más apropiada. Aplicar 

distintas hipótesis cerebelares a una tarea de control motor compleja proporciona la posibilidad de 

explicar el cómo la información sensorimotora y cognitiva pudieran ser manipuladas por una 

arquitectura cerebelar computacional. 

Debido a la alta dimensionalidad que una red neuronal realista presenta y las limitaciones y restricciones 

temporales inherentes a un entorno de control robótico en tiempo real, un simulador ultra-rápido de 

redes neuronales biológicas es a todas luces imprescindible. Las exigencias temporales demandan un 

simulador en tiempo real (EDLUT) [65] [66]. La combinación de ambos campos, arquitecturas 

biológicas y teoría de control, constituye un desafío excitante a la par que científicamente 

tremendamente relevante. 
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Para utilizar un modelo completo de cerebelo simulado, inserto en un ciclo de control donde se ha de 

manipular con precisión un brazo robótico, se necesita de un banco de pruebas apropiado para el testeo 

de los sistemas biológicos  desarrollados. Para hacer frente a todos los inconvenientes surgidos de 

trabajar en medio de estos dos mundos, robótica y biología, se necesita una piedra de Rosetta que pueda 

establecer las pasarelas de comunicación entre ellos puesto que el procesamiento biológico se realiza en 

términos de impulsos eléctricos mientras que el procesamiento de control robótico se realiza en 

términos de señales analógicas. El cómo el impacto de una cierta actividad neuronal perteneciente a una 

estructura particular del cerebelo se ha de traducir a una tarea de control y viceversa no es una tarea 

trivial. Una vez  establecido dicho diálogo entre impulsos y señales de control, los parámetros que 

permiten discernir entre las bondades de distintas arquitecturas constituye el siguiente paso a desarrollar. 

Desde el punto de vista de la teoría de control, el mejor sistema sería aquel que consigue el mejor 

rendimiento en términos de precisión, velocidad y estabilidad. Esta idea puede ser extrapolada a la 

neurociencia, en el sentido de considerar el mejor sistema biológicamente inspirado a aquel que en una 

tarea de control consiga una mayor precisión, velocidad y estabilidad sin descuidar la fidelidad a los 

detalles biológicos. El mejor sistema biológicamente inspirado obtenido debiera suministrar un mejor y 

más profundo conocimiento sobre los sistemas biológicos reales. 

IV. OBJETIVOS 

El objetivo principal de este estudio es la implementación de un modelo funcional del cerebelo en un 

escenario de control robótico, explotando así las posibles capacidades que la arquitectura del cerebelo 

pudiera presentar. Esta implementación pretende contribuir a una mejor comprensión del sistema 

nervioso central (esencialmente el cerebelo) a partir de una aproximación computacional. 

El diseño de un modelo integrado del cerebelo en un bucle de control no es un camino fácil y directo. 

Alcanzar este objetivo ha exigido y exige un proceso continuo de desarrollo el cual ha sido dividido en 

diferentes etapas (en relación a las publicaciones en revistas incluidas en este estudio) de manera que 

pueda darse una visión gradual de todo el trabajo desarrollado. 

 En primer lugar, el primer sub-objetivo consiste en realizar el estudio de cómo un circuito 

cerebelar artificial integrado en un lazo de control sería capaz de crear modelos de corrección 

para compensar desviaciones en la trayectoria a ejecutar cuando la dinámica de la planta (el 

brazo en el caso de un operador humano) se viese alterada debido a la manipulación de objetos 
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pesados (cuya masa afecta significativamente a la dinámica del modelo base de la planta). El 

estudio tendría como finalidad entender cómo este modelo de corrección se infiere a través de 

un mecanismo de adaptación biológicamente plausible local utilizando una arquitectura 

cerebelar simplificada. 

 El siguiente objetivo consiste en tratar de describir cómo una red neuronal de impulsos más 

realista (se añade la capa granular) que imita la micro-estructura cerebelar permite la abstracción 

de modelos correctivos internos. Mediante la adopción de una red inspirada en el cerebelo, se 

pueden explorar cómo las diferentes representaciones  sensoriales poden ser utilizadas 

eficientemente con el fin de obtener un modelo de abstracción correctivo preciso para la 

manipulación de diferentes objetos. Esto se ha de llevar a cabo en dos fases: 

i. Se establece una tarea de relevancia biológica consistente en una manipulación precisa 

por parte de la planta base (brazo robótico) de objetos que por sus características 

afectan al modelo dinámico base de dicha planta (se ve afectado tanto su modelo 

cinemático como dinámico). 

ii. Se define e implementa un modelo aditivo de red neuronal cerebelar base para evaluar 

como diferentes propiedades de dicho modelo funcional afectan en la ejecución de la 

tarea previamente establecida. 

 En tercer lugar se debe estudiar como el modelo cerebellar previo,  el cual incluiría plasticidad 

en las fibras paralelas (depresión a largo plazo y potenciación a largo plazo de la transmisión 

sináptica), se pude embeber en distintos lazos de control (control recurrente, control antes del 

proceso: “forward”, y una combinación de ambos modelos) para inferir modelos correctivos 

que compensen no solo las desviaciones en la trayectoria objetivo a causa de perturbaciones 

dinámicas o cinemáticas sino también causadas por el ruido (inherente a las señales de impulsos 

provenientes de los husos musculares) que se introduce a través de las fibras musgosas  

llegando al cerebelo. El principal objetivo debiera ser establecer una comparativa que evaluase 

estas arquitecturas de control para poder así mostrar la manera en la que una arquitectura 

recurrente y otra arquitectura de control antes del proceso puedan verse complementadas y la 

robustez que ambas presentasen ante la presencia de ruido. 
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 Finalmente se ha de estudiar cual sería la mejor manera de conseguir que la información 

sensorimotora en un entorno robótico genérico pudiera ser manipulada con objeto de obtener 

una codificación óptima en términos de información somatosensorial. 

V. MARCO DE LOS PROYECTOS ASOCIADOS 

Este trabajo se ha  venido desarrollando en el marco de dos proyectos europeos; "estructuración 

sensorimotora de percepción y acción para la cognición emergente" (SENSOPAC) y "Redes realistas en 

tiempo real: la dinámica de la computación en el cerebelo" (REALNET (IST-270434)). 

El primero de ellos,  SENSOPAC (IST-028056), se extendió desde enero de 2006 a julio de 2010, 

donde se colaboró con 12 instituciones de 9 países diferentes. El proyecto SENSOPAC (IST-028056) 

combinaba tanto técnicas de aprendizaje automático como técnicas para el modelado de diversos 

sistemas biológicos con el fin de desarrollar una determinada estructura computacional que fuese capaz 

de abstraer conceptos cognitivos de las relaciones sensorimotoras durante las interacciones con su 

entorno, y a su vez también capaz  de generalizar dicho conocimiento a situaciones nuevas. En 

particular, SENSOPAC (IST-028056) ha combinado distintos modelos de robot en una tarea de 

exploración táctil con el fin de comprender distintas relaciones causales de diferentes dinámicas 

sensoriales. Se han incorporado modelos neuronales detallados de  áreas clave del cerebro en los 

modelos funcionales de percepción, toma de decisiones, planificación y control,  con el fin de  ampliar y 

mejorar el conocimiento que se tiene  tanto en el campo de la Neurociencia como de la Ingeniería. 

Más concretamente, se ha estado estudiando profundamente tanto la retroalimentación sensorial táctil 

como la  realimentación de señales propioceptiva  así como las fibras aferentes de los comandos 

motores. Dichos estudios se han s empleado en tareas de manipulación bajo diversos contextos 

permitiendo así estudiar la representación eficiente en la estructura neuronal, los mecanismos de 

codificación/decodificación de la información y las distintas abstracciones de conocimiento, tanto en la 

manipulación háptica humana, como los sistemas de sensores robóticos artificiales. 

Nuestro grupo de investigación de la Universidad de Granada ha estado involucrado principalmente en 

el desarrollo del entorno de computación de neuronas y redes neuronales (EDLUT). Los hallazgos 

neurofisiológicos obtenidos, por ejemplo, a través de registros se han tratado de  implementar en este 

simulador con el fin de diseñar sistemas de control más biológicos capaces de llevar a cabo 

eficientemente tareas de manipulación. 
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Figure 5.1. Organización de los Módulos en  SENSOPAC 

 

Nuestro trabajo como miembros en este proyecto se ha centrado en el estudio de tareas relevantes a 

nivel de control biológico así como en el conjunto de módulos de simulación necesarios para la 

integración entre neurofisiología y la teoría de control de sistemas robóticos. 

Hoy en día, nuestro grupo de investigación está involucrado con el proyecto REALNET (IST-270.434) 

como continuación de SENSOPAC (IST-028056). REALNET (IST-270434) se inició en febrero de 

2011 y se extenderá hasta febrero de 2014. El objetivo principal de este proyecto es comprender los 

circuitos cerebrales del sistema nervioso central desde su nivel funcional hasta su nivel 

molecular/neuronal. A fin de comprender el procesamiento cerebelar se necesita tomar un enfoque 

diferente; se necesita implementar redes neuronales realistas que hagan uso de comunicación por 

impulsos, inspiradas en el conjunto de registros neurofisiológicos experimentales obtenidos de 

verdadera actividad de la red cerebelar, para poder así investigar cuales debieran ser las bases teóricas de 

la computación del sistema nervioso central. Como punto de referencia de este proyecto se utiliza el 

circuito del cerebelo. Sobre la base de datos experimentales, este proyecto desarrollará la primera red 

realista en tiempo real del modelo de cerebelo. Este modelo de cerebelo se conectará a un sistema 

robótico biomorfico con el fin de  evaluar su funcionamiento  bajo condiciones de circuito de control 

realimentado. Los datos derivados de las grabaciones, las simulaciones a gran escala y los robots se 
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utilizan para explicar el funcionamiento de la circuitería cerebelar a través de la teoría del filtro 

adaptativo. 

Debido a las necesidades de conocimiento  multidisciplinar que estos proyectos  requieren, cada uno de 

los miembros de nuestro grupo de investigación se ha visto obligado a centrar su investigación en un 

área particular. El presente trabajo presenta los resultados en los que una arquitectura cerebelar simulada 

se utiliza para manipular un brazo robótico. Este trabajo implica: tratar con sistema robóticos, 

desarrollar un simulador de brazo robótico, estudiar los lazos de control biológicamente plausibles, la 

conversión de señales de impulsos dadas por  el simulador integrado EDLUT a señales utilizables en el 

lazo de control, estudio de relación impulso /señal analógica ... etc. Todos estos temas centran mi 

investigación, pero cabe señalar que todo este trabajo no habría sido posible sin el arduo trabajo de 

Jesús Alberto Garrido quien ha estado a cargo de la evolución del simulador EDLUT con el fin de 

simular estructuras biológicas más realistas y aumentar el rendimiento de las simulaciones. 

VI. ORGANIZACIÓN POR CAPÍTULOS 

Con el fin de facilitar la lectura y la utilización de esta tesis se hará una breve exposición de la 

información presentada en cada capítulo: 

 En el capítulo 1 (este capítulo), se realiza una pequeña introducción del estado del arte en la 

neurociencia computacional aplicada en robótica. Se presenta la motivación de esta tesis  y se 

resume el trabajo que se va a llevar a cabo. 

 En el capítulo 2, se presenta una contextualización adecuada del área de investigación en la que 

se ha enmarcado esta tesis. A pesar de que los artículos en revistas son autocontenidos no hay 

duda de que una visión previa del campo de investigación tratado hace más fácil la tarea de 

adentrarse en los detalles a través de los artículos de revista. 

 En el capítulo 3, se enumeran brevemente las principales aportaciones y se propone el trabajo 

futuro. 

 Por último, en el capítulo 4, todos los artículos relacionados con la tesis se han incluido junto 

con una breve reseña indicando el factor de impacto que cada uno de ellos posee y el cuartil al 
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que pertenece. Además se han incluido distintas reseñas breves a diferentes publicaciones 

asociadas a este trabajo (ponencias y artículos en revistas con coautoría). 
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D i s c u s i ó n  y  C o n c l u s i o n e s  

En este capítulo se muestra un resumen de las principales contribuciones asociadas a los trabajos 

presentados, así como las futuras líneas de trabajo planteadas a partir de la labor descrita en esta 

memoria. De igual manera, se incluye un breve resumen de los resultados obtenidos así como una lista 

de las conferencias internacionales y revistas que este trabajo ha generado. 

I. DISCUSIÓN 

Como primer paso, esta tesis (capítulo 4, sección 1) presenta una arquitectura cerebelar sencilla 

capaz de inferir modelos de corrección en el marco de una tarea de control motor donde se 

manipulan objetos que afectan de manera significativa al modelo dinámico del sistema a controlar. 

Esta aproximación primaria busca en primera instancia un enfoque bio-mimético, centrándose en el 

proceso de inferencia de modelos correctivos mediante un módulo cerebelar integrado en un ciclo 

de control. De igual forma se estudia cómo estos modelos de corrección internos se constituyen 

por medio de mecanismos sinápticos de adaptación biológicamente plausibles. Se muestra por 

tanto, como una ley de correlación temporal (que incluye depresión a largo plazo (LTD) y una 

potenciación a largo plazo (LTP) entre las fibras paralelas y sus células de Purkinje) es capaz de 

inferir dichos modelos correctivos. También se ha evaluado cómo esta ley de aprendizaje es capaz 

de correlacionar la actividad sensorial que llega a través de las fibras paralelas con las señales de 

aprendizaje (en función de las estimaciones de error) que llegan a través de las fibras trepadoras 

provenientes de la oliva inferior. Esta aproximación a un primer modelo funcional del cerebelo 

bioinspirado arroja un poco de luz sobre cómo estos componentes LTD y LTP deben estar bien 

equilibrados entre sí para lograr un aprendizaje preciso. Además, se ilustra cómo la ley de 

aprendizaje es responsable de la correlación temporal pudiendo trabajar en presencia de retrasos en 

la transmisión en las vías sensoriales. 
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Este tipo de investigaciones puede dar pistas sobre cómo la biología consigue un control preciso de 

las articulaciones no-rígidas de extremidades con actuadores de bajo consumo que implican 

sistemas de control con componentes de alta inercia. 

El artículo asociado a esta parte es: 

N. R. Luque, J. A. Garrido, R. R. Carrillo, O. J. M. D. Coenen, E. Ros, “ Cerebellar-like Corrective 

Model Inference Engine for Manipulation Tasks ”, IEEE Transactions on Systems, Man, and 

Cybernetics, Part B: Cybernetics, 41(5), 2011. 

 En segundo lugar este trabajo evalúa (capítulo 4 sección 2)  la manera en la que una evolución de la 

arquitectura neuronal previamente señalada puede almacenar un modelo correctivo en la capa 

granular/molecular. Como fue señalado en el capítulo de contextualización, el cerebelo es uno de 

los centros nerviosos más importantes implicados en la corrección y refinamiento de movimientos 

planificados así como en la generación de correcciones apropiadas sobre la ejecución de dichos 

movimientos. Por lo tanto sería muy interesante no sólo estudiar la capacidad de almacenaje de la 

capa granular/molecular sino también como la microestructura cerebelar y la conexión de sus 

entradas puede apoyar eficientemente la abstracción de modelos correctivos que produzcan pares 

correctivos que incrementen la precisión al manipular diferentes objetos. En este trabajo se describe 

cómo las señales explícitas e implícitas de contexto (señales sensoriales) pueden complementarse 

entre ellas para mejorar la selección entre diferentes modelos correctores  almacenados permitiendo 

incluso la interpolación entre dos modelos distintos ya establecidos. Se facilita así la generación de 

correcciones precisas durante la manipulación de nuevos objetos ayudándose de modelos 

correctores ya aprendidos. 

El artículo asociado a esta parte es: 

N. R. Luque, J. A. Garrido, R. R. Carrillo, O. J. M. D. Coenen, E. Ros, “Cerebellar Input 

Configuration Toward Object Model Abstraction in Manipulation Tasks”. IEEE Transaction on 

Neural Networks, 22(8), 1321-1328, 2011. 

 Como evolución natural, el siguiente paso se centra en evaluar el comportamiento que el modelo 

cerebelar previamente descrito tiene cuando se inserta en diferentes ciclos de control (control 

recurrente, control antes del proceso: “forward”, y una combinación de ambos) para controlar un 

brazo robótico (capítulo 4 sección 3).  La red de impulsos se auto adapta frente a las perturbaciones 

en un escenario de manipulación de objetos donde existen cambios sobre la dinámica y cinemática 
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del modelo base del brazo robótico y junto a la presencia de distintos niveles de ruido en las 

entradas cerebelares (fibras musgosas). De acuerdo a los resultados obtenidos, acoplando ambas 

arquitecturas de control se obtienen los beneficios de ambas (mayor velocidad de convergencia y 

precisión) incrementándose además la robustez del sistema frente al ruido. 

El artículo asociado a esta parte es: 

N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu, E. Ros, Adaptive Cerebellar Spiking Model 

Embedded In The Control Loop: “Context Switching And Robustness Against Noise”, Int. Journal 

of Neural Systems, 21(5), pp. 385-401, 2011. 

 Una vez que  la arquitectura cerebellar primaria y el ciclo de control han sido establecidos llega el 

turno de evolucionar para conseguir un sistema que tenga no solo una aproximación desde un 

punto de vista tan ingenieril sino también que cada vez dicho sistema tome más en cuenta 

diferentes fuentes fisiológicas. (capítulo 4 sección 4). Como se mostró en el capítulo de 

contextualización, en los sistemas biológicos, en lugar de tener un codificador de posición por cada 

articulación, se tienen señales propioceptivas adquiridas a través de campos receptivos. En robótica, 

se utiliza una salida única y precisa de un sensor por eslabón para hacer un seguimiento de la 

posición y la velocidad. Realizar una interfaz entre un sistema de control bioinspirado con una red 

neuronal cerebelar de impulsos con un robot convencional no es algo directo y trivial. Por lo tanto 

se necesita adaptar esta medida unidimensional (salida del codificador de posición) a un espacio 

multidimensional (entradas de la red neuronal de impulsos) para conectar la arquitectura cerebelar 

de impulsos. En esta subsección se analiza cómo unos campos receptivos que han sido 

evolucionados para conseguir una mejor transmisión de información pueden generar una 

representación  sensorimotora eficiente que facilite la discriminación entre distintos estados 

sensorimotores. Este proceso se puede entender como una abstracción del funcionamiento del 

núcleo cuneiforme. Este núcleo es modelado como un codificador en población mediante neuronas 

de impulsos en función de la respuesta de distintos mecanoreceptores. En nuestro caso las 

coordenadas del espacio articular de un robot son transformadas en patrones de impulsos 

susceptibles de ser procesados eficientemente por el siguiente módulo (el cerebelo). En concreto, el 

modelo de este núcleo presenta un esquema de codificación que toma en cuenta los tiempos 

relativos de los impulsos que se propagan desde las fibras nerviosas periféricas hacia las neuronas 

somatosensoras de segundo orden. 

El artículo asociado a esta parte es: 
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Luque, N. R.; Garrido, J. A.; Ralli, J.; Laredo, J. J.; Ros, E.: “From Sensors to Spikes: Evolving 

Receptive Fields to Enhance Sensory Motor Information in a Robot-Arm Scenario".  Int. Journal of 

Neural Systems, 22(4), pp. 0-20, 2012. 

II. TODAS LAS PUBLICACIONES ASOCIADAS A ESTA TESIS 

La investigación desarrollada se ha realizado en el marco de dos proyectos europeos; REALNET (IST-

270434) / SENSOPAC (IST-028056), donde diferentes retos se han abordado desde diferentes 

perspectivas a través de las sinergias entre neurofisiólogos e ingenieros de diversas especialidades. Este 

trabajo ha sido evaluado en un marco de conferencias internacionales y publicaciones científicas (con 

factor de impacto (IF) en el JCR). 

1. Revistas Internacionales con índice de impacto 

1. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Coenen, O. J. M. D.; Ros, E: “Cerebellar-like 

corrective-model abstraction engine for robot movement control”. IEEE Transaction on system, man, 

and cybernetics - Part B: Cybernetics, 41(5), 2011. Impact Factor (JCR 2010): 2.699. Quartile Q1 in 

categories: Automation & Control Systems, Computer Science,  Artificial Intelligence and 

Computer Science, Cybernetics 

2. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Coenen, O. J. M. D.; Ros, E: “Cerebellar input 

configuration towards object model abstraction in manipulation Tasks”. IEEE transaction on neural 

networks, 22(8), 1321-1328, 2011.  Impact Factor (JCR 2010): 2.633.  Quartile Q1 in categories: 

Computer Science, Artificial Intelligence, Computer Science, Hardware & Architecture. Computer 

Science, Theory & Methods and Engineering, Electrical & Electronic. 

3. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Tolu, S.; Ros, E.: “Adaptive cerebellar spiking model 

in a bio-inspired robot-control loop”. International Journal on Neural Systems, 21(5), 385-401, 2011. 

Impact Factor (JCR 2010): 4.237. Quartile Q1 in category: Computer Science, Artificial Intelligence. 

4. Luque, N. R*.; Garrido, J. A*.; Ralli, J.; Laredo, J. J.; Ros, E.: “From Sensors to Spikes: Evolving 

Receptive Fields to Enhance Sensory Motor Information in a Robot-Arm Scenario". International 
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Journal on Neural Systems, 22(4), 1-20, 2012. Impact Factor (JCR 2011): 4.284. Quartile Q1 in 

category: Computer Science, Artificial Intelligence. 

*Both authors contributed equally to this work 

5. Tolu, S.; Vanegas, M.; Luque, N. R.; Garrido, J. A.; Ros, E.: “Bio-Inspired Adaptive Feedback 

Error Learning Architecture for Motor Control". Biological Cybernetics, 106(8-9), 507-522, 2012. 

Impact Factor (JCR 2011): 1.586. Quartile Q1 in category: Computer Science, Cybernetics. 

Quartile Q4 in category: Neuroscience. 

6. Tolu, S.; Vanegas, M.; Garrido, J. A.; Luque, N. R.; Ros, E.: “Adaptive and Predictive Control of a 

Simulated Robot Arm” International Journal on Neural Systems, Accepted for publication. Impact 

Factor (JCR 2011): 4.284. Quartile Q1 in category: Computer Science, Artificial Intelligence. 
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model abstraction in manipulation”. International Joint Conference on Neural Networks (IJCNN 

2010). 

3. Garrido, J. A.; Carrillo, R. R.; Luque, N. R.; Ros, E.: “Event and time driven hybrid simulation of 

spiking neural networks”. International Work-Conference on Artificial Neural Networks (IWANN 

2011). Advances in Computational Intelligence. Lecture Notes in Computer Science, 6691, pp. 554-

561. Springer, Heidelberg (2011). 
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III. MARCO CIENTÍFICO 

Esta tesis se ha desarrollado en el marco de dos proyectos europeos: 

 SENSOPAC (estructuración sensoriomotora de la Percepción y la Acción para la cognición 

emergente (IST-028056)) 

 REALNET (redes realistas en tiempo real: la dinámica de la computación en el cerebelo (IST-

270434)).)). 

Este hecho ha proporcionado el escenario perfecto para que nuestro grupo de investigación pudiera 

colaborar con los diferentes grupos de investigación en otras universidades europeas e instituciones de 

investigación. El trabajo presentado representa sólo una parte de la contribución que  la Universidad de 

Granada ha hecho en estos dos consorcios SENSOPAC / REALNET. En este escenario resulta 

imprescindible una aproximación multidisciplinar en el proceso de investigación. 

Este trabajo presenta distintos resultados desde un punto de vista biológico, sin embargo, también 

implica otras áreas del conocimiento. Un ejemplo de la dificultad del proceso de investigación es el 

conjunto de frentes a atacar: desarrollo del sistema robótico, desarrollo de módulos computacionales 

biológicamente inspirados basados en datos neurofisiológicos y buscando posibles aplicabilidades en 

robótica o la evolución de un simulador realista de red neuronal capaz de funcionar en diferentes 

entornos son sólo un par de ejemplos. No sería justo obviar que todo este esfuerzo no ha sido único 

por mi parte sino que ha requerido de un trabajo de alta colaboración y coordinación con el equipo de 

trabajo. 
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IV. PRINCIPALES APORTACIONES 

 Se ha presentado un modelo de cerebelo integrado en un lazo de control que incluye un 

modelo de cálculo aproximado de dinámica inversa. Este modelo puede proporcionar de 

manera efectiva pares correctores que compensan las desviaciones dinámicas de un modelo de 

la planta base (brazo robótico). 

 Se ha evaluado cómo una ley de correlación temporal en fibras paralelas (que presenta 

depresión dirigida en los pesos sinápticos a largo plazo LTD y un componente de 

compensación de potenciación a largo plazo de pesos sinápticos LTP) puede alcanzar una 

adaptación eficaz de la salida correctiva del cerebelo. Tanto LTD como LTP han de ser 

equilibrados para alcanzar un buen rendimiento en la capacidad de adaptación. Un LTD bien 

equilibrado con la componente LTP asegura una reducción efectiva del error en las tareas de 

manipulación de objetos que pudieran afectar considerablemente a la dinámica de la planta base 

(brazo robótico). 

 Se ha demostrado cómo dicha ley de correlación temporal puede trabajar en presencia de 

retardos sensoriales. Esta estructura cerebelar  adaptativa puede generar la salida correctiva 

adecuada de manera adaptativa para cada punto de la trayectoria deseada, el retardo en las vías 

sensoriales ha demostrado no ser muy relevante. 

 Se presenta una estudio de la influencia de las señales de entrada sensorial usando una 

evolución de la arquitectura cerebelar previamente desarrollada (se añade la capa granular). Se 

han estudiado dos representaciones posibles de entrada , señales sensoriales explícitas de 

contexto (CE) y señales sensoriales implícitas del contexto (IC). La configuración que utiliza 

ambas represen-taciones aprovecha las ventajas de ambas complementándolas entre sí. La 

configuración de entradas  IC y EC ofrece transiciones más suaves entre contextos a una 

velocidad de convergencia mayor así como la capacidad de interpolación de nuevos contextos a 

partir de modelos previamente adquiridos. Además, es capaz de discernir información de 

contexto explícita engañosa, por lo que presenta cierta robustez ante representaciones 

incongruentes de contexto. 

 La arquitectura cerebelar propuesta se ha evaluado en diferentes ciclos de control en un 

entorno robótico sometido a un escenario con presencia de distintos niveles de ruido. Los 



110 Chapter 6 

 

 

resultados obtenidos indican que el acoplamiento de las arquitecturas de control recurrente y 

control antes del proceso: “forward”, lleva a una convergencia más rápida del aprendizaje y a 

una ganancia de precisión y estabilidad en un entorno ruidoso mayor que si cada una de estas 

arquitecturas actuase por sí misma. 

 Se ha demostrado que esta arquitectura de control acoplada tiene la capacidad de inferir y 

almacenar diferentes modelos de corrección cuando existen modificaciones dinámicas / 

cinemáticas sobre la planta base mejorando cada configuración desacoplada por si misma. 

Además esta arquitectura propuesta acoplada es compatible con varios hallazgos 

neurofisiológicos. 

 Por último, se ha presentado una metodología general (mediante el uso de algoritmos 

genéticos) para representar de manera eficiente en términos de señales de entrada de impulsos 

los valores de los codificadores de posición de los diferentes eslabones que un manipulador 

robótico pudiera presentar. 

V. TRABAJO FUTURO 

Como trabajo futuro se presentan dos principales líneas de investigación a seguir: 

Por un lado, se necesita evolucionar todo el modelo cerebelar en el marco de una tarea de control 

utilizando aquellas propiedades que los hallazgos de la neurociencia muestran. No hay una conexión 

directa entre estas propiedades neurofisiológicas y su aplicación final en un escenario de control de una 

tarea en particular. El estudio de cómo estos hallazgos podrían mejorar un modelo plausible del 

cerebelo requiere de un gran esfuerzo de investigación. Es necesario tender un puente entre estos 

campos (neurociencia e ingeniería) aparentemente tan poco relacionados para obtener una mejor 

comprensión de los principios arquitecturales, funcionales y biológicos que el cerebelo presenta. La 

inclusión de la plasticidad sináptica en la mayoría de las sinapsis  neuronales cerebelares (diferentes 

estudios experimentales han demostrado la existencia de estos mecanismos en múltiples sinapsis) será 

nuestro primer paso en este prometedor camino. Este aprendizaje distribuido es una poderosa 

herramienta de adaptación en el control biológicamente plausible capaz de configurar la red neuronal 

automáticamente para obtener el mejor rendimiento posible. El aprendizaje localizado en conexiones  
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MF→DCN o PC→DCN junto con el  bien conocido aprendizaje entre GrC→PF→PC se ha 

demostrado que tiene un fuerte impacto en la consolidación de aprendizaje en el cerebelo. 

Hablando en el contexto de red, gran parte de la atención en nuestra investigación futura se centrará en 

la conexión IO→DCN. Esta conexión podría desempeñar un papel clave para entender cómo podría 

implementarse un control biológico de rápida respuesta sin hacer uso de un controlador PID clásico (o 

de otras estrategias de control clásico que pertenecen a este campo de control) ni usando 

aproximaciones funcionales tales como CMAC, MPIM, LWPR o el modelo cerebelar de Fujita. 

Hablando en términos de conexiones neuronales, nuestro objetivo es evolucionar la capa granular, 

implementando la inhibición lateral neuronal. Esta característica podría permitir una mejor codificación 

de los patrones de entrada alcanzando una mayor precisión en términos de codificación en población. 

Diferentes grupos de neuronas responderían a determinados patrones de entrada logrando así una 

mejor diferenciación de estados. 

La segunda línea de investigación está relacionada con la tarea de manipulación. Ahora mismo estamos 

trabajando en la interconexión de las redes neuronales desarrolladas no sólo con un simulador robótico, 

sino también con un robot real. Con este fin, tendremos que volver a re-implementar los controladores 

físicos para poder modificar su actuación punto a punto a lo largo de la trayectoria a seguir. Tenemos 

que desarrollar una metodología para validar diferentes hipótesis de modelos cerebelares en una tarea de 

manipulación en términos de estabilidad ya que los tests matemáticos clásicos tales como el criterio de 

estabilidad de Lyapunov, de  Routh-Hurwitz, criterios de estabilidad de Nyquist, etc no encajan bien en 

estas redes neuronales de impulsos. Las redes neuronales de impulsos se caracterizan por poseer una 

complejidad y dimensionalidad extraordinaria, por el contrario los test matemáticos conocidos se 

aplican tradicionalmente a problemas de una mejor complejidad y dimensionalidad donde el 

comportamiento de cada uno de los elementos del sistema es perfectamente conocido dentro de unos 

ciertos límites dados donde es posible aplicar dichos tests.. Estos prerrequisitos no están disponibles en 

una red neural de impulsos debido a su propia naturaleza. 

Todas estas cuestiones se abordarán en un proyecto  europeo iniciado recientemente  (REALNET 

(IST-270 434)). 
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Cerebellarlike Corrective Model Inference Engine
for Manipulation Tasks

Niceto Rafael Luque, Jesús Alberto Garrido, Richard Rafael Carrillo,
Olivier J.-M. D. Coenen, and Eduardo Ros

Abstract—This paper presents how a simple cerebellumlike
architecture can infer corrective models in the framework of a
control task when manipulating objects that significantly affect the
dynamics model of the system. The main motivation of this paper
is to evaluate a simplified bio-mimetic approach in the framework
of a manipulation task. More concretely, the paper focuses on
how the model inference process takes place within a feedforward
control loop based on the cerebellar structure and on how these
internal models are built up by means of biologically plausible
synaptic adaptation mechanisms. This kind of investigation may
provide clues on how biology achieves accurate control of non-
stiff-joint robot with low-power actuators which involve control-
ling systems with high inertial components. This paper studies how
a basic temporal-correlation kernel including long-term depres-
sion (LTD) and a constant long-term potentiation (LTP) at parallel
fiber-Purkinje cell synapses can effectively infer corrective models.
We evaluate how this spike-timing-dependent plasticity correlates
sensorimotor activity arriving through the parallel fibers with
teaching signals (dependent on error estimates) arriving through
the climbing fibers from the inferior olive. This paper addresses
the study of how these LTD and LTP components need to be well
balanced with each other to achieve accurate learning. This is of
interest to evaluate the relevant role of homeostatic mechanisms
in biological systems where adaptation occurs in a distributed
manner. Furthermore, we illustrate how the temporal-correlation
kernel can also work in the presence of transmission delays in
sensorimotor pathways. We use a cerebellumlike spiking neural
network which stores the corrective models as well-structured
weight patterns distributed among the parallel fibers to Purkinje
cell connections.

Index Terms—Adaptive, biological control system, cerebellum,
learning, plasticity, robot, simulation, spiking neuron.

I. INTRODUCTION

CONTROLLING fast non-stiff-joint robots accurately with
low-power actuators is a difficult task which involves high

inertia. Biological systems are, in fact, non-stiff-joint “plants”
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driven with relatively low-power actuators. However, in this
case, control schemes require building accurate kinematic and
dynamic models (dynamic models would not be required in the
case of very stiff joint robots with inappreciable inertia). Even
if the basic dynamics model is very accurate, manipulating
tools and objects will affect this base model. This will lead to
significant distortions along the desired movements, affecting
the final accuracy. Therefore, these systems require adaptive
modules for tuning the corrective models to specific object or
tool manipulation. This challenge has been smartly solved by
the biological systems by using the cerebellum as a force, stiff-
ness, and timing control machine in every human movement.
The cerebellar cortex performs a broad role in different key
cognitive functions [1]. Three different layers constitute the
cerebellar cortex—the molecular layer, the Purkinje layer, and
finally, the granular layer. The cerebellar cortex seems to be
well structured into microzones [2] related to a specific soma-
totopic organization in sensor and actuator areas. The human
cerebellum involves about 10 000 000 Purkinje cells receiv-
ing excitatory inputs from parallel fibers (150 000 excitatory
synapses at each Purkinje cell). Each parallel fiber synapses on
about 200 Purkinje cells; these parallel fibers are granule cell
axons. These granule cells are excited by mossy fibers (with
afferent connections from the spinal cord, with sensory and
motor estimates). Each Purkinje cell receives further excitatory
synapses from one single climbing fiber. This connection is so
strong that the activity from a single climbing fiber can drive
the Purkinje cell to fire [3]. These spikes from the Purkinje
cells generated by climbing fibers are called complex spikes,
while the Purkinje cell spikes generated by the activity received
from the parallel fibers are called simple spikes. Basket cells,
being activated by parallel fiber afferents, can inhibit Purkinje
cells. Finally, Golgi cells receive input from parallel fibers,
mossy fibers, and climbing fibers, and inhibit granule cells. The
output of a Purkinje cell is an inhibitory signal to the deep
cerebellar nuclei [3] (Fig. 1). Granule cells and Purkinje cells
play an important role in pattern recognition [4]. We can assume
that the granular layer adaptation mechanism is essentially
unsupervised [5] toward enhancing information transmission.
In this layer, an efficient recoding of mossy fiber activity takes
place, improving the learning capability in subsequent stages
(granular cell-Purkinje cell synapse). The cerebellum seems to
play a crucial role in model inference within manipulation tasks
but the way this is supported by actual network topologies,
cells, and adaptation properties is an open issue.

We have addressed the study of how this model inference
task can be achieved in a local and distributed manner with
a basic cerebellumlike architecture based on spiking neu-
rons. Furthermore, we evaluate how spike-timing-dependent

1083-4419/$26.00 © 2011 IEEE
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Fig. 1. Scheme of the cerebellum organization [6]. This scheme shows the
most relevant connections within a cerebellar module. The cerebellar module
presents different connections communicating different circuit elements in
closed loops. Mossy fibers contact granule cells (GrC) and DCN cells which,
in turn, receive inhibition from the same common set of Purkinje cells (PC).
Moreover, the IO cells project climbing fibers that contact PC which also are
projected to DCN cells.

plasticity (STDP) provides an efficient learning rule for this
task. We do this by using a simple temporal-correlation kernel
[long-term depression (LTD)] and a constant compensating
long-term potentiation term (LTP) as the adaptation mecha-
nism at the parallel fiber (PF)-Purkinje cell (PC) synapses. We
explore how the LTP and LTD components of this learning
rule need to be well balanced to achieve an acceptable perfor-
mance. Although different systems that potentially compensate
transmission delays have been proposed [7], [8]; in this paper,
we explicitly avoid compensating them. The correlation kernel
is able to correlate sensorimotor activity with error estimates
without explicitly taking into account the transmission delays.
This inferred model is therefore trajectory-specific. By means
of a certain correlation kernel, the effect of several input spikes
on plasticity is accumulated in a reduced number of variables
without the necessity of storing spike times. This makes this
correlation kernel computationally efficient for event-driven
processing engines, as the one used in this paper, EDLUT
[9]. In this paper, we explicitly evaluate how these corrective
models are structured in a distributed manner among different
synapses in the PF-PC connection space. The possibility of
monitoring this spatio-temporal learned weight pattern repre-
sents a powerful tool to interpret how models are inferred to
enhance the accuracy in a control task. We evaluate how this
learning engine with specific (fixed gain) LTP and correlation-
based LTD components can infer different corrective dynamic
models corresponding to the manipulation of objects of differ-
ent masses.

Control schemes of biological systems must cope with sig-
nificant sensorimotor delays (100 ms approximately) [10]–[12].
Furthermore, actuators are very efficient but have a limited

power and have to deal with viscoelastic elements. In order to
deal with all these issues, biology has evolved efficient “model
inference engines” to facilitate adaptive and accurate control of
arms and hands [13]–[15]. A wide range of studies have proven
the crucial role of the cerebellum in delivering accurate correct-
ing motor actions to achieve high-precision movements even
when manipulating tools or objects (whose mass or moment
of inertia significantly affects the base dynamics models of the
arm-hand) [15]–[17]. For this purpose, the cerebellum structure
needs to infer the dynamics model of the tool or object under
manipulation [18] and store it in a structured way that allows
an efficient retrieval of corrective actions when manipulating
this item. There are scientific evidences of synaptic plastic-
ity at different sites of the cerebellum and the sensorimotor
pathway. The synaptic connection between PFs and PCs seems
to have a significant impact on the role of inferring models
of sensorimotor correlations for delivering accurate corrective
commands during control tasks in most cerebellar models
[19]–[21]. Furthermore, the adaptation at this site seems to be
driven by the activity coming from the inferior olive (IO) and
by the way this activity correlates with the activity received
through the PFs.

Within a cerebellarlike cell-based structure, the corrective
model is inferred in a distributed way among synapses. Fur-
thermore, this scheme based on distributed cell populations
allows several models to be inferred in a non-destructive way
by selecting a specific population each time.

The main goal of this paper is the study of how an adaptive
cerebellumlike module embedded in the control loop can build
up corrective models to compensate deviations in the target
trajectory when the dynamics of the controlled plant (arm-
hand-object in the case of a human operator) are altered due to
manipulation of heavy objects (whose mass significantly affects
the basic model dynamics). We address the study of how this
corrective model is inferred through a biologically plausible
local adaptation mechanism. To better illustrate this issue, we
have simplified the cerebellum architecture.

Through this simple cerebellar structure, we have monitored
how the weight’s space adapts to a distributed stable model that
depends on the basic network topology, the target trajectory,
and model deviations.

The IO is an important paracerebellar center whose func-
tional role is still an open issue [5], [6], [22]–[25]. Different
research groups have studied its potential role in delivering a
teaching signal during accurate movements [26]–[29]. The IO
is the only source of cerebellar climbing fibers (CFs) which
target the Purkinje cells (PC). Each PC receives a single CF
which massively connects with this single neuron strongly
driving its activity. When a spike of the IO reaches its target
PC, the Purkinje cell fires a complex spike. Each CF connects
approximately with ten PCs. Nevertheless, the IO fires at a very
low frequency (between 1–10 Hz, average 1 Hz) and therefore,
the amount of spikes coming from the CFs is almost negligible
compared to the activity of the PCs generated by the parallel
fibers (simple spikes) [30]–[33].

Neurophysiologic studies have revealed that there are many
adaptation mechanisms at the cerebellum. Each of them may
have a specific purpose (segmentation, maximization of infor-
mation transference, correlation of sensorimotor signals, etc.)
[34], [35]. In particular, the activity of the IO has a strong
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impact on the PF-PC synaptic adaptation [36]. The adaptation
of these synapses mediated by this activity seems to play a
crucial role in correlating the sensorimotor activity with a
“teaching signal” (arriving from the IO) [19], [20], [37], [38].
This teaching signal can be seen as an “intentional signal” that
highlights, in time domain, the accuracy of the movement that is
being performed. As proposed in [12], [39], this signal may be
related to the error during a movement. But since the IO is only
capable of very low-frequency output spikes (typically, output
activity between 1 and 10 Hz), it does not encode the error
quantity accurately in only one movement repetition, but rather
provides a progressive estimate. Therefore, during repetitions
of movements, its statistical representation may reproduce the
error evolution more accurately [28], [40], [41] and thus, it can
be a useful guide toward efficient error reduction to achieve
accurate movements.

II. MATERIALS AND METHODS

For extensive spiking network simulations, we have further
developed and used an advanced event-driven simulator based
on LookUp Tables [9], [42], [43]. EDLUT is an open-source
tool [42], [43] which allows the user to compile the response
of a predefined cell model (whose dynamics are driven by a
set of differential equations) into lookup tables. Then, complex
network simulations can be performed without requiring an in-
tense numerical analysis. In this research, as a first approxima-
tion, neurons were evolved versions of leaky integrate-and-fire
neuron models with the synapses represented as input-driven
conductances.

For the experimental work, we have used a biomorphic robot
plant, a simulated LWR (lightweight robot). This robot has been
developed at DLR [44]. The LWR’s arms are of specific interest
for machine-human interactions in unstructured environments.
In these scenarios, the use of low-power actuators prevents po-
tential damage on humans in case of malfunctioning. Although
a real impact on robotic applications is beyond the scope of
this paper, the target application scenario of this robotic robot
based on non-stiff low-power actuators shares certain character-
istics with the daily manipulation tasks performed by humans.
Therefore, we considered this robotic platform an appropriate
tool for validating the cerebellar-based model inference engine
under study.

For the sake of simplicity, in our simulations, we use a
simulator of this robot in which we have fixed some joints to
reduce the number of actual joints to three, limiting the number
of degrees of freedom to three.

A. Training Trajectory

The described cerebellar model has been tested in a smooth
pursuit task [45]–[47]. A target (desired target movement)
moves along a repeated trajectory, which is composed of verti-
cal and horizontal sinusoidal components. The target movement
describes the “eight-shape” trajectories illustrated in Fig. 2,
whose equations, in angular coordinates, are given by the
following expressions (1). We have evaluated the learning capa-
bility performing a goal movement along this target trajectory.

Fig. 2. Three joint periodic trajectories describing eight-shape move-
ments in joint coordinates. This trajectory implies movements of three
joints. (a) Cartesian coordinates of the eight-like trajectory. (b) 3-D view of the
eight-like trajectory. (c) X- and Z-axes representation of this target trajectory.
(d) Y and Z-axes representation of the eight-like target trajectory.

Each joint movement in our task is defined by q1, q2, and q3,
respectively,

q1 =A1 sin(πt) + C1

q2 =A2 sin(πt + θ) + C2

q3 =A2 sin(πt + 2θ) + C3. (1)

This trajectory with the three joints which are moving follow-
ing sine shapes is shown in Fig. 2. We chose fast movements
(1 s for the whole target trajectory) to study how inertial
components (when manipulating objects) are inferred at the
cerebellar structure. Slow movements would hide changes in
the dynamics of the arm+object model, since they would not
have significant impact when performing very slow movements.

Though for the sake of simplicity, we have used a single
eight-like trajectory in each trial, consecutive eight-like trajec-
tories have also been tested leading to similar results (provided
that the corrective torque values do not get saturated along the
global trajectory).

B. Control Loop. Interfacing the Cerebellum Model
With a Simulated Robot

Some studies indicate that the brain may plan and learn
to plan the optimal trajectory in intrinsic coordinates [14],
[48]–[50]. The central nervous system is able to execute three
major tasks—the desired trajectory computation in visual co-
ordinates, the task-space coordinates translation into body co-
ordinates, and finally, the motor command generation. In order
to deal with variations of the dynamics of the operator arm, we
have adopted an feedback error learning scheme [51] in con-
junction with a crude inverse dynamic model. In this scheme,
the association cortex provides the motor cortex with the de-
sired trajectory in body coordinates, where the motor command
is calculated using an inverse dynamic arm model. On one
hand, the spinocerebellum—magnocellular red nucleus system
provides an internal neural accurate model of the dynamics of
the musculoskeletal system which is learned with practice by
sensing the result of the movement. On the other hand, the
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Fig. 3. Control loop. The adaptive module (cerebellarlike structure) con-
tributes to the actual torques being received by the “crude inverse dynamics
robot model” to enhance the accuracy of the movement.

cerebrocerebellum—parvocellular red nucleus system provides
a crude internal neural model of the inverse dynamics of the
musculoskeletal system which is acquired while monitoring the
desired trajectory [51]. The crude inverse dynamic model works
neck to neck with the dynamical model by updating the motor
command by predicting a possible error in the movement.
As it is illustrated in Fig. 3, the cerebellar pathways follow
a feedforward architecture, in which only information about
sensory consequences of incorrect commands can be obtained
(i.e., the difference between actual and desired joint positions of
the arm). The natural error signal for learning motor commands
is the difference between actual and correct commands; this
implies, for example, that if M muscles control N sensor
dimensions involved in a task, then N -sensory errors must be
converted into M -motor errors (M × N complexity). How to
use this sensor information to drive motor learning is the so-
called distal error problem [46], [52]. In order to overcome this
motor error problem, (the cerebellum in our scheme provides
torque corrections) the implemented spiking cerebellum used
an adaptation mechanism described in Section II-D which can
correlate the actual and desired states toward the generation of
accurate corrective motor commands.

In our model, the cerebellum receives well-structured inputs
encoding the planned trajectory. We assume that the errors
occurred during the movement are encoded at the IO and
transferred (at low firing rates) to the cerebellum through the
climbing fibers.

We have built a module to translate a small set of signals
(encoding the arm’s desired state) into a sparse cell-based spike-
timing representation (spatio-temporal population coding). This
module has been implemented using a set of input fibers with
specific receptive fields covering the working range of the
different desired state variables (position and velocity of the dif-
ferent joints). In this way, the robot [analog domain consisting
of trajectory planer, trajectory generator, crude inverse dynamic
arm model, and arm plant (Fig. 3)] has been interfaced with the
spiking cerebellar model (spiking domain).

In our control loop, the desired states (positions and veloci-
ties) that follow a certain trajectory are obtained from an inverse
kinematic model computed by other brain areas [48] and then,
they are translated into joint coordinates. These desired arm
states are used at each time step by a crude inverse arm
dynamics model to compute crude torque commands which are
added to the cerebellum corrective torques. This control loop is
illustrated in Fig. 3.

Fig. 3 illustrates how the trajectory planner module delivers
desired positions and velocities for a target trajectory. The kine-
matics module translates the trajectory Cartesian coordinates
into joint coordinates. The “crude inverse dynamics arm model”
calculates the target torque in each joint which are necessary to
roughly follow the target trajectory. But this crude arm model
does not take into account modifications in the dynamics model
due to object manipulation. Thus, if only these torque values
are considered, the actual trajectory may significantly differ
from the desired one. The adaptive cerebellar component aims
at building corrective models to compensate these deviations,
for instance, when manipulating objects.

In Fig. 3, the adaptive cerebellarlike structure delivers cor-
rective actions that are added to compensate deviations in the
base dynamics plant model when manipulating objects. In this
feedforward control loop, the cerebellum receives a teaching
error-dependent signal and the desired arm state so as to pro-
duce effective corrective commands. Total torque is delayed
(on account of the biological motor pathways) and supplied to
the robot plant δtotal. The difference between the actual robot
trajectory and the desired one is also delayed δ1,2 and used
by the teaching signal computation module to calculate the IO
activity that is supplied to the cerebellum as a teaching input
signal (for the computation of the cerebellar synaptic weighs).
Using this control loop architecture, an accurate explicit model
of the musculoskeletal arm inverse dynamics is not necessary.
The cerebellum can infer corrective models tuned to different
tools which may affect the dynamics of the plant (arm+object).

C. Cerebellum Model

The proposed cerebellarlike architecture, organized in cere-
bellar microzones [2] (somatotopic arrangement), tries to cap-
ture some cerebellum’s functional and topological features [3],
[53]. This cerebellum model consists of the following layers:
(Fig. 4)

• Input layer (120 cells). This layer represents a simplifica-
tion of the mossy and granular layers of the cerebellum
and drives PCs and cells of the deep cerebellar nuclei
(DCN). The goal of this simplification is to facilitate the
study of how the sensorimotor corrective models are stored
in adapted weights at the PF-PC connections. This input
layer has been divided into six groups of 20-grouped cells
which carry the desired joint velocity and position infor-
mation (these desired position and velocity coordinates
can be thought as efferent copies of the motor commands
or “motor intention”); for the propioceptive encoding,
three groups of cells encode the desired joint positions
(one group per joint) and the other three encode the
desired joint velocities. The analog position and velocity
transformation into the fiber spike activity is carried out
by using overlapping radial basis functions (RBF) (Fig. 5)
[54] as receptive fields of the input-variable space, see (2)
(joint-specific angular position)

Imossyi
= e

(input variable−μi)
2

2σ2

i 0 < i < n

where = size of mossy group, (2.A)
where the mossy behavior is given by :

τmi

dvi

dt
= −vi(t) + RiImossyi

(2.B)
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Fig. 4. Cerebellum model diagram. Inputs encoding the desired position
and velocity (arm state) are sent (upward arrow) through the input layer which
represents a simplification of the mossy fibers and granular layer. Inputs encod-
ing the error are sent (upper downward arrow) through the inferior olive (IO).
Outputs are provided by the deep cerebellar nuclei (DCN) (lower downward
arrow). The DCN collects activity from the input layer (excitatory inputs which
provide DCN with a basal activity when an input stimulus is presented) and the
Purkinje cells (inhibitory inputs). The DCN activity represents the corrective
torque generated by the cerebellum. This output activity is transformed into a
proper analog torque signal by means of a buffer in which the DCN activity is
accumulated. This activity buffer is used to compute an analog average value
that acts as a corrective torque.

Fig. 5. Encoding of cerebellar input signals. Translation from joint-related
analog variables (angular positions and velocities) into spike trains is carried
out using overlapping RBFs as receptive fields in the analog domain. One-
dimensional values are transformed into multidimensional current vectors (one
for each RBF). Each current value is integrated using an integrate-and-fire
(I & F) neuron model and determines the output activity of an input cell of
the cerebellum model.

where μi is the mean and σ the standard deviation of
i RBF. Related to the cell dynamics, τmi

is the resting
time constant, vi the membrane potential, Imossyi

the input
current, and Ri is related to the resting conductance of the
membrane. For the sake of simplicity, in our model, we
have not included a more detailed cellular structure (Golgi
cells, interneurons, mossy fibers, etc.). We have adopted
well-structured noise-free patterns to encode sensorimo-
tor signals to partially embed potential roles typically
performed in the granular layer [6], [55] (such as noise

reduction, pattern separation, etc.). Parallel fibers are the
output of this layer.

• Inferior olive cells (IO) (48 cells). This layer consists of
six groups of eight cells. It translates the error signals into
teaching spikes to the Purkinje cells. The IO output carries
the teaching signal used for supervised learning (see STDP
section).

• Purkinje cells (PC) (48 cells). They are divided into six
groups of eight cells. Each input cell sends spikes through
excitatory connections to PCs, which receive teaching sig-
nals from the IO. The PF-PC synaptic conductances are set
to an initial average value (15 nS) at the beginning of the
simulation and are modified by the learning mechanism
during the training process.

• Cells of the DCN (24 cells). The cerebellum model output
is generated by six groups of these cells (two groups of
four cells per joint) whose activity provides corrective
torques to the specified arm commands. The corrective
torque of each joint is encoded by a couple of these
antagonist groups, being one group dedicated to com-
pensate positive errors and the other one to compensate
negative errors. Each neuron group in the DCN receives
excitation from every input layer cell and inhibition from
the two corresponding PCs. In this way, the PC-DCN-IO
sub circuit is organized in six microstructures (Fig. 4),
three for positive joint corrections (one per joint) and three
for negative joint corrections (one per joint).

We have used leaky integrate-and-fire (I&F) neurons with
synapses modeled as variable conductances to simulate
Purkinje cells and DCN cells. These models are a modified
version of the spike response model [56]. These synaptic
conductance responses were modeled as decaying exponential
functions triggered by input spikes as stated by (3.A)–(3.C).
Thus, these neuron models account for synaptic conductance
changes (driven by pre-synaptic activity) rather than simply for
current flows, providing an improved description over more ba-
sic I&F models. Table I contains the neuron model parameters
of the Purkinje cells and DCN cells

gexc(t) =
{

0, t < t0

gexc(t0) · e−
t−t0
τexc , t ≥ t0

(3.A)

ginh(t) =
{ 0, t < t0

ginh(t0) · e−
t−t0
τinh , t ≥ t0

(3.B)

Cm
dVm

dt
= gexc(t)(Eexc − Vm) + ginh(t)(Einh − Vm)

+ Grest(Erest − Vm) (3.C)

where gexc and ginh represent the excitatory and inhibitory
synaptic conductance (time constant) of the neuron. τexc and
τinh represent the time constants of the excitatory and in-
hibitory synapses, respectively. Synaptic inputs through several
synapses of the same type can simply be recursively summed
when updating the total conductance if they have the same
time constants, as indicated in (4). Membrane potential (Vm)
is defined through (3.C) depending on the different reverse
potentials and synaptic conductances

gexc(post−spike)(t) = Gexc,j + gexc(pre−spike)(t) (4)

Gexc,j is the weight of synapse j; a similar relation holds for
inhibitory synapses.
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TABLE I
NEURON MODEL PARAMETERS FOR THE SIMULATIONS [57]–[61]. IN THE TABLE, nS STANDS FOR NANOSIEMENS AND syn STANDS FOR SYNAPSES

Fig. 6. LTD integral kernel. (a) Representation of a basic integral kernel (x · e−x) which has a rather wide peak that makes PC synaptic weights to decrease
more prominently and a more complex integral kernel (sin(x)20) · e−x which has a sharper peak. (b) This plot shows the amount of LTD at a particular synapse
depending on the IO spike arrival time elapsed since the PF spikes for different integral kernels. The figure includes a comparison between the basic integral kernel
(x · e−x) and a more complex integral kernel (sin(x)20) · e−x which has a peak 100 ms after the input spike. The PC receives three spikes through a particular
CF at times 0.0, 1, and 1.5 s.

D. STDP

The studied cerebellar model only includes synaptic plas-
ticity at the PF-PC connections. The changes of the synaptic
efficacy for each connection are driven by pre-synaptic activity
(STDP) and are instantaneous.

In our model, since there are delays in the transmission
of joint torque values and joint position measurements, the
trajectory error measurements (which are used to calculate the
teaching signal) reach the cerebellum with a 100-ms delay.
This means that the learning mechanism must learn to provide
corrective torque predictions.

This plasticity has been implemented including LTD and LTP
mechanisms in the following way:

a) LTD produces a synaptic efficacy decrease when a spike
from the IO reaches a PC, as indicated in (6.A). The
amount of efficacy which decreases depends on the pre-
vious activity arrived through the PF (input of the cere-
bellar model). This previous activity is convolved with
an integral kernel as defined by (5). This mainly takes
into account those PF spikes which arrived 100 ms before
the IO spike (see Fig. 6). This correction is facilitated
by a time-logged “eligibility trace” [45], [47], [62], [63],
which takes into account the past activity of the afferent

PF. This trace aims to calculate the correspondence in
time between spikes from IO (error-related activity) and
the previous activity of the PF which is supposed to have
provoked this error signal. The eligibility trace idea stems
from experimental evidence showing that a spike in the
climbing fiber afferent to a Purkinje cell is more likely
to depress a PF-PC synapse if the corresponding PF has
been firing between 50 and 150 ms before the IO spike
(through CF) arrives at the PC [45], [47]

k(t) = e−(t−tpostsynapticspike) sin(t − tpostsynapticspike)20. (5)

b) LTP produces a fixed increase in synaptic efficacy each
time a spike arrives through a PF to the corresponding PC
as defined by (6.B). With this mechanism, we capture how
an LTD process, according to neurophysiologists studies
[64], can be inverted when the PF stimulation is followed
by spikes from the IO or by a strong depression of the
Purkinje cell membrane potential.

The strength of these two mechanisms needs to be tuned to
complement and compensate each other. These biological LTP-
LTD properties at PF-PC synapses have been tried to be emu-
lated in different fields, i.e., in the adaptive filter [65] theory by
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using the heterosynaptic covariance learning rule of Sejnowski
[66] or in the adaptive control theory by using the least-mean-
square learning rule [67]. Different alternative temporal kernels
are shown in Fig. 6. The sharper the integral kernel peak is,
the more precise the learning becomes. On the other hand, this
leads us to a slower synaptic weight adaptation. However, LTP
can lead the weight recruitment to be compensated by future IO
activity. This situation drives us to faster synaptic weight satu-
ration where LTP can hardly carry out the weight recruitment
for future IO activity. After the main peak in the correlation
kernel, a second marginal bump can be seen as a consequence
of the mathematical model used for modeling the correlation
engines. The chosen mathematical models of the kernel allow
accumulative computation in an event-driven engine, avoiding
the necessity of integrating the whole correlation kernel each
time a new spike arrives. Therefore, these correlation models
are computationally efficient in the framework of an event-
driven simulation scheme, such as EDLUT [9], but they suffer
this second marginal peak that can be considered noise in the
weight integration engine.

This is indicated in the following (6):

LTD,∀i,Δwi = −
IOspike∫
−∞

k(t − tIOspike)δGRspike−i(t)dt

(6.A)
LTP,Δwi = α. (6.B)

E. Teaching Signal of the Inferior Olive

The crude inverse dynamics controller generates motor
torque values for a rough control, but the long delays in the
control loop prevent the online correction of the trajectory in a
fast reaching task using a classical controller with a continuous
feedback. In the studied control model, the trajectory error
is used to calculate the teaching signal. This teaching signal
follows (7)

εdelayedi
= Kpi · εpositioni

+ Kvi · εvelocityi

i = 1, 2, 3, . . . joint
εpositioni

= (qidesired − qireal)
[
(t + tpred)i − ti

]
εvelocityi

= (q̇idesired − q̇ireal)
[
(t + tpred)i − ti

]
(7)

where Kpi · εpositioni
represents the product of a constant value

(gain) at each joint Kpi and the position error in this joint [dif-
ference between desired joint position and actual joint position
(qidesired − qireal)].

Kvi · εvelocityi
represents the product between a constant

value (gain) at each Kvi joint and the velocity error in this
joint [difference between desired joint velocity and actual joint
velocity (q̇idesired − q̇ireal)].

The IO neurons synapse onto the PCs and contribute to drive
the plasticity of PF-PC synapses. These neurons, however, fire
at very low rates (less than 10 Hz), which appears problematic
to capture the high-frequency information of the error signal of
the task being learned. This apparent difficulty may be solved
by their irregular or chaotic firing [13], [41], [68]. This is a very
important property, which has the beneficial consequence of
statistically sampling the entire range of the error signal over
multiple trials (see below). Here, we implemented this irregular

firing using a Poisson model [69] for spike generation. The
weight adaptation was driven by the activity generated by the
IO, which encoded the teaching signal into a low-frequency
probabilistic spike train (from 0 to 10 Hz, average 1 Hz)
[5], [41].

We modeled the IO cell responses with probabilistic Poisson
process. Given the normalized error signal ε(t) and a random
number η(t) between 0 and 1, the cell fired a spike if ε(t) >
η(t); otherwise, it remained silent [47]. In this way, on one
hand, a single spike reported accurately timed information
regarding the instantaneous error; and on the other hand, the
probabilistic spike sampling of the error ensured that the whole
error region was accurately represented over trials with the cell
firing almost ten spikes per second. Hence, the error evolution
is accurately sampled even at a low frequency [12]. This
firing behavior is similar to the ones obtained in physiological
recordings [41].

LTD and LTP play complementary roles in the model in-
ference process. The LTP implemented at the PF-PC synapses
was a non-associative weight increase triggered by each input
cell spike [64]. The LTD was an associative weight decrease
triggered by spikes from the inferior olive [26], [27]. This
model of LTD uses a temporal kernel, shown in Fig. 6, which
correlates each spike from the IO with the past activity of the
parallel fiber [10], [45], [70]. Correlation-based LTD allows
the adjustment of specific PF-PC connections to reduce the
error according to the IO activity. When IO spikes are received,
the synaptic weights of the PF-PC connections are reduced
according to the temporal-correlation kernel and to the activity
received through the PF. In this way, we reduce the probability
of production of simple spikes by PC due to the activity coming
from the PFs through these specific connections. Therefore, the
IO effectively modulates the spatio-temporal corrective spike
patterns. In this model, a learning state in the cerebellum (PF-
PC weights) can be seen as a bidimensional function which
relates each PF and PC combination with their corresponding
synaptic weight [Fig. 7(c)].

Physiologically, the time matching of the desired and actual
joint states can be understood by the fact that the trajectory error
would be detected at the level of the spinal cord through a direct
drive from the gamma motoneurons to the spinal cord [71].

III. SIMULATIONS AND RESULTS

We have carried out several simulations to study different is-
sues: a) How LTD and LTP need to be balanced to optimize the
adaptation performance; b) how the temporal-correlation kernel
(integral kernel) works even in the presence of sensorimotor
delays; and c) how the same learning mechanism can adapt the
system to compensate different deviations in the basic model
dynamics (due to manipulating objects of different weights).

A. LTD Versus LTP Trade-Off

At the beginning of the learning process (before the con-
nection weights are adjusted), the spikes received from the
input fibers excite the DCN cells, producing a “bias correc-
tion” term on the motor commands. The role of the cerebellar
PF-PC-DCN loop is to specifically inhibit this bias term ac-
cording to a spatio-temporal pattern that is inferred during
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Fig. 7. Cerebellum state after 300 trajectory learning iterations. (a) Input activity at the cerebellum. The input layer produces a set of spikes after the
transformation from analog domain into spike domain These spikes are transmitted directly by PF. This activity (desired positions and velocities) keeps on
constant during all iterations. (b) DCN output activity generated by those synaptic weights. Error corrections are accomplished by changes in the activity of PCs
that, in turn, influence the activity of the DCN [72], which afterward is translated into analog torque correction signals. Each group of four DCN cells encodes
the positive or negative part of a joint corrective torque. The more activity the positive/negative group has, the higher/lower corresponding corrective torque is
generated. (c) PC-PF synaptic weight representation. Inx-axis, we can see the source cells (PFs). In y-axis, target cells (PCs) are shown. Dark colors represent
lower synaptic weights, thus, the corresponding DCN cells are more active. We can see six well-defined rows, each row represents weights related with the positive
and negative torque output of the three joints (q3, q2, and q1), and six well-defined columns (related with the input activity of the PF corresponding to the desired
position and velocity for the three joints). (d) Output torque after analog transformation from the DCN output spikes. These corrective torque curves have a profile
strongly related with the number of DCN cells assigned per joint; thus, increasing the quantity of DCN per joint will generate a smoother corrective profile.

movement executions and to further compensate other devi-
ations generated by the manipulation of different objects or
other elements, affecting the dynamics of the initial “arm
plant” (without object under manipulation). The PF-PC-DCN
loop transmits an activity pattern which is adapted taking into
account the teaching signals provided by the IO (described in
the previous section).

In the first simulations, the arm is manipulating a 1-kg mass
object. This mass significantly affects the dynamics of the
arm+object. Therefore, the actual trajectory (without correc-
tive support) deviates significantly from the target trajectory.
We have studied how the cerebellar module compensates this
deviation building a corrective model.

Fig. 7 illustrates how the corrective model is acquired
through learning and structured in distributed synaptic weight
patterns. When the arm moves along a target trajectory, dif-
ferent input cell populations are activated. They produce a
temporal signature of the desired movement. Meanwhile, the
IO continuously transfers trajectory error estimates (teaching
signals) which are correlated with the input signature. In Fig. 7,
the system adaptation capability is monitored. This helps to
interpret how the corrective model is continuously structured.
Similar monitoring experiments in much simpler scenarios and
smaller scale cell areas are being conducted in neurophysio-
logic studies [6] to characterize the adaptation capability of
neurophysiologic systems at different neural sites.

When manipulating heavy objects which do not properly fit
the basic plant model, the followed trajectory drifts from the
desired one before learning. This deviation is more prominent
when the desired trajectory changes direction [see Fig. 7(a)]
due to the arm’s inertia. After learning, the cerebellum output
counteracts this inertia, generating higher torques during these
changes of the desired trajectory direction [see Fig. 7(d)]. The
weight matrix learned by the cerebellum reflects the moments
when higher corrective torque values are supplied. By looking
at Fig. 7(b) and (d), we can see that the higher corrective
torque is produced when the desired trajectory joint coordi-
nates change direction. This occurs in the peaks of the sine
waves describing the desired trajectory and corresponds to the
activation of the higher and lower input fibers of each block
[left and right side of the six weight columns of Fig. 7(c)].
To generate a high corrective torque, the cerebellum must
unbalance the magnitude of the positive and negative parts of
the joint corrective output [q+ and q− in Fig. 7(b)] which
is calculated from the activity of the DCN cells. These DCN
cells are grouped by joints. A higher activity affecting positive
corrections in a joint produces higher corrective torque. Since
PCs inhibit DCN cells, a low PC activity is required for a
high DCN activity and vice versa. To obtain a low PC activity,
low PF-PC weights are required, which corresponds to small
dark squares in Fig. 7(c). Small light squares correspond to
high values of the weights. Looking at both sides of the six
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weight columns of Fig. 7(c), we can observe how the weight
values alternate between high and low in adjacent rows which
alternately encode the weights corresponding to the positive and
negative parts of each joint corrective torque.

During the learning process, the corrective model is captured
in the PF-PC connections. In this way, the movements become
more accurate, the error decreases and therefore, also the ac-
tivity of the IO is reduced. This allows the learned models to
become stable once the error reaches appropriate values.

The learning performance is characterized by using four
estimates calculated from the mean absolute error (MAE) curve
[73]. For the calculation of the MAE of a trajectory execution,
we have considered the addition of the error in radians produced
by each joint independently.

1) accuracy gain (estimates the error reduction rate com-
paring the accuracy before and after learning). This es-
timate helps to interpret the adaptation capability of the
cerebellum when manipulating different objects, since the
initial MAE for each of these manipulated objects may be
different

Accuracy Gain = MAEinitial

−
(

1
n

n∑
i=0

MAE(final−i)

)
n = 30; (8)

2) final error (average error over the last 30 trials)

Final Error =

(
1
n

n∑
i=0

MAE(final−i)

)
n = 30; (9)

3) final error stability (average of standard deviation over the
last 30 movement trials)

Final Error Stability

=
1
n

n∑
i=0

(
σ

(
MAE(final−i)

))
n = 30; (10)

4) error convergence speed (number of samples to reach the
final error average)

Error Convergence Speed = j; where

MAEj ≤
(

1
n

n∑
i=0

MAE(final−i)

)
0 < j ≤ final. (11)

We have carried out 70 simulations of a complete training
process, where each training process consists of 400 trajec-
tory executions and each trajectory execution is carried out in
1-s simulation time (i.e., the whole system is executed
28 000 times). During each of these training processes, the
obtained error in each trajectory execution decreases until it
reaches a final stable value. The obtained MAE of a single
complete training process is shown in Fig. 8(a). We have tested
this learning process with different LTD and LTP components
to evaluate how they affect the adaptation capability of the
system. From each of these training processes (with different
LTD and LTP values), we obtain the performance estimates
defined above (accuracy gain, final error, final error stability,
and error convergence speed). These performance estimates
characterize the adaptation mechanism capability.

As it is shown in Fig. 8(b) and (c), both LTP and LTD
must be compensated. Low LTD values combined with high
LTP values cause high weight saturation. This can be seen in
Fig. 8(c), in which 3-D final normalized error values of the
first figure are represented in a high flat surface correspond-
ing to high errors. We also have a flat surface close to zero
in Fig. 8(c) (3-D final normalized error stability figure); the
cerebellum output is totally saturated. Therefore, when LTP-
LTD tradeoff is unbalanced (LTP dominating LTD), the system
adaptation capability is low, leading to high error estimators
and useless high stability. On the other hand, when high LTD
values are combined with low LTP values, this causes low
weight saturation. In Fig. 8(c) 3-D plots, we see a good final
average error and a good accuracy gain and convergence speed
but very unstable output. This is also indicated by the error
variance figure estimates which are high in this LTD-LTP
area. A compensated LTD-LTP setting drives us to a high-
accuracy gain and also, to a low and stable final error with high
convergence speed. For instance, if our LTD choice is 0.075,
our LTP must be lower than 0.015 to achieve a proper stable
learning mechanism. In all the following simulations, we have
fixed the LTD and LTP parameters to these values. Therefore,
we illustrate how different model deviations (by different object
manipulations) can be compensated with a fixed and balanced
temporal-correlation kernel and how this correction loop works
even in the presence of different sensorimotor transmission
delays.

B. Learning Temporal-Correlation Kernel Allows Corrective
Model Inference Even in the Presence of Sensorimotor Delays

The cerebellumlike structure previously described works
even with sensorimotor delays by means of the temporal-
correlation kernel which determines the amount of LTD to be
applied. This is summarized in Fig. 9. The results (in Fig. 9)
have been obtained after performing four simulations (each one
for different delay setups) of 400 trajectory executions each. On
the other hand, this temporal-correlation kernel remains robust
not only with different unbalanced delays but also with a non-
perfect matching between sensorimotor delays and the temporal
correlation kernel peak, as it is shown in Fig. 10. These results
have been obtained after performing five simulations (each one
for a different time deviation) of 400 trajectory executions each.

This robustness is achieved because the scheme is using de-
sired coordinates (positions and velocities) which remain stable
across different trials. Nevertheless, with delays mismatching
(between learning kernel inherent time shift and sensorimotor
delays) over 70 ms, this scheme becomes unstable.

C. Learning Different Dynamic Models

The presented cerebellum microstructure and the long-term
plasticity, side by side, facilitate internal model inference. The
cerebellum model adapts itself to infer a new model by using
error signals which are obtained when manipulating this new
object. We study the ability of the cerebellar architecture to
infer different corrective models for dynamics changes on a
base manipulator model.

Under normal conditions, without adding any extra mass
to the end of the effector (arm), the crude inverse dynamics
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Fig. 8. Learning characterization. The error taken into account in this learning characterization is a global addition of the absolute joint errors in position from
each link of our robot plant. (a) During the learning process, the movement error decreases along several iterative executions of trials of an eight-like trajectory
benchmark. We evaluate the learning performance using four estimates extracted from the MAE curve: 1) accuracy gain; 2) final error; 3) final error stability;
and 4) error convergence speed. (b) Using these four estimators, we can evaluate how LTP and LTD affect the learning process. We have conducted multiple
simulations with different LTD-LTP tradeoffs to characterize the learning behavior. The goal of an appropriate learning process is to achieve a high-accuracy gain
and a low and stable final error.

model calculates rough motor commands to control the arm
plant. In contrast, under altered dynamics conditions, the motor
commands are inaccurate to compensate for the new under-
gone forces (inertia, etc.), and this leads to distortions in the
performed trajectories. During repeated trials, the cerebellum
learns to supply the corrective motor commands when the
arm plant model dynamics differs from the initial one. These
corrective motor commands are added to the normal-condition
motor commands. Then, improved trajectories are obtained as
the learning process goes on. The cerebellum gradually builds
up internal models by experience and uses them in combination
with the crude inverse dynamics controller. This cerebellum
adaptation is assumed to involve changes in the synaptic effi-

cacy of neurons constituting the inverse dynamics model [74],
as it is shown in our simulation results (Fig. 11).

The performance results of the followed trajectory have
been evaluated during 400 trajectory executions manipulating
different objects attached at the end of the last segment of the
arm of 0.5, 1, 1.5, and 2 kg. Fig. 11 illustrates the performed
trajectory for each simulation with an object of a different mass.
Fig. 12 shows how the cerebellar model is able to learn/infer
the corrective dynamics model for the different objects. The
error curves of Fig. 12(a) (where each sample represents the
error along one eight-like trajectory) show how the control
loop with the adaptive cerebellar module is able to significantly
reduce the error during the training process. Fig. 11 shows that
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Fig. 9. Temporal-correlation kernel for different sensorimotor delays
(delays from 25 to 150 ms have been tested). We have adjusted the correlation
kernel peak position to match (see Fig. 6) the sensorimotor delays of the control
loop illustrated in Fig. 3. As it is shown, the delay value does not affect to a large
extent the obtained performance. The final average error is nearly constant in
these different simulations.

Fig. 10. Temporal-correlation kernel behavior with different deviations
between sensorimotor delays and the kernel peak (deviation from 50 to
70 ms have been tested). We have evaluated different deviations between the
correlation kernel peak position (see Fig. 6) and the sensorimotor delays of the
control loop illustrated in Fig. 3. As it is shown, despite the kernel peak does
not exactly match with sensorimotor delays, the cerebellum still works and the
final average error keeps on constant. The cerebellum is able to correlate the
delayed sinusoidal inputs and the non-in-phase peak kernel.

manipulating heavier objects means that the starting error is
higher, since the arm dynamics differ from the original one to a
larger extent. Therefore, the cerebellum learns to supply higher
corrective torques, which makes a bigger difference between
the initial and final error. This makes the accuracy gain estimate
higher than in the other cases. On the other hand, for improving
the global accuracy gain, higher forces have to be counteracted
to follow the desired trajectory.

IV. DISCUSSION

This paper focuses on studying how a cerebellarlike adaptive
module, operating together with a crude inverse dynamics
model, can effectively provide corrective torque to compensate
deviations in the dynamics of a base plant model (due to object
manipulation). This is relevant to understand how the cere-
bellar structure embedded in a biologically plausible control
loop can infer internal corrective models when manipulating
objects which affect the base dynamics model of the arm. The
spiking neural cerebellum connected to a biomorphic robot

plant represents a tool to study how the cerebellar structure
and learning kernels (including time shifts for compensating
sensorimotor delays) provide adaptation mechanisms to infer
dynamics correction models toward accurate object manipula-
tion. Concretely, we have evaluated how a temporal-correlation
kernel driving an error-related LTD and a compensatory LTP
component (complementing each other) can achieve effective
adaptation of the corrective cerebellar output. We have shown
how the temporal-correlation kernel can work even in the pres-
ence of sensorimotor delays. However, considering the results
obtained for several sensorimotor delays, we can state that the
desired trajectory must be coded using a univocal population
coding in each time step, that is, the codification of the desired
position/velocity during the trajectory must be different for each
point of the trajectory. And thus, as our cerebellar structure
can adaptively generate any suitable output for each trajectory-
point codification, the delay of the sensorimotor pathways is
not remarkably relevant, even if this delay does not match the
intrinsic compensatory delay of the learning integration kernel.

In this simple cerebellarlike structure, we have shown how
the representation of the cerebellar weight matrix correspond-
ing to the PF-PC connections can be interpreted in terms of
the generated corrective torque (which, in turn, is a direct
consequence of this representation). This allows us to study
the performance of this corrective model storage and how the
changes of the arm dynamics (manipulating different object)
are inferred on different synaptic weight patterns.

We have also shown how LTD and LTP need to be balanced
with each other to achieve high performance adaptation capabil-
ities. We have studied the behavior of these two complementary
adaptation mechanisms. We have evaluated how the learning
behaves when they are balanced and also when they are in
value ranges in which one of them dominates saturating the
adaptation capability of the learning rule. We have evaluated
how well-balanced LTD and LTP components lead to an effec-
tive reduction of error in manipulation tasks with objects which
significantly affect the dynamics of the base arm plant.

We have used a simplified version of the cerebellum to focus
on the way that the cerebellar corrective models are stored
and structured in neural population weights. This is of interest
to inform neurophysiologic research teams to drive attention
to potential footprints of inferred models within the PF-PC
connections.

As future work, we will study how to dynamically optimize
the LTD-LTP integration kernel instead of a single, stable, and
balanced LTD-LTP kernel, we will evaluate the capability of
improving the adaptation mechanism, shifting this balance to
acquire the corrective models faster and then, decrease the
plasticity once an acceptable performance is reached. This
approach can optimize the learning capability of the system.

We will also develop further real-time interfaces between
analog signals and spiking neurons (between the robot and the
EDLUT simulator) to perform simulations with real robots and
new cerebellar architectures working in a manipulation task
scenario in which granular layer, Golgi cells, and stellate cells
will be included. This will be addressed in a starting EU project
(REALNET).

The neuron models, cerebellar models, and adaptation mech-
anisms will be available at the EDLUT simulator site to facili-
tate the reproduction of the presented work.



1310 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 5, OCTOBER 2011

Fig. 11. Learning the corrective models for the eight-like target trajectory when manipulating objects with different masses (2, 1.5, 1, and 0.5 kg).
(a) three-joint value representation for the performed trajectory. The three joints are shown. The followed trajectory is shown each 25 trials during a 400-trial
complete learning process. (b) 2-D representation of the performed trajectory (Desired trajectory in red; in blue. initial trial; in black, trial number 200; and in
cyan, final trial). Improvement in %: 0.5 kg 200-trial 40.4% 400-trial 49%; 1 kg 200-trial 64.6% 400-trial 64.5%; 1.5 kg 200-trial 72.5% 400-trial 74.4%;
2 kg 200-trial 78.6% 400-trial 79.3%. Stability improvement in % (average std over 0–30 trials/17–200 trials/370–400 trials). 0.5 kg 170–200-trials 82%
compared to initial 0–30-trials, 370–400-trials 60.1% comparing to initial 0–30-trials. 1 kg 170–200-trials 49.6% compared to initial 0–30 trials, 370–400-trials
42.1% compared initial 0–30-trials. 1.5 kg 170–200 trials 46.1% compared to initial 0–30 trials, 370–400-trials 26.4% compared to initial 0–30-trials. 2 kg 170–
200 trials 26.4% compared to initial 0–30-trials, 370–400 trials 25.1% compared to initial 0–30 trials.

Fig. 12. Learning performance when manipulating different objects (0.5,
1, 1.5, and 2 kg) during 400-trial learning processes. (a) MAE evolution.
Learning occurs on a continuous basis providing incremental adaptability
throughout the simulation time. (b) Accuracy gain.
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Brief Papers

Cerebellar Input Configuration Toward Object Model
Abstraction in Manipulation Tasks

Niceto R. Luque, Jesus A. Garrido, Richard R. Carrillo,
Olivier J.-M.D. Coenen and Eduardo Ros

Abstract— It is widely assumed that the cerebellum is one of
the main nervous centers involved in correcting and refining
planned movement and accounting for disturbances occurring
during movement, for instance, due to the manipulation of objects
which affect the kinematics and dynamics of the robot-arm plant
model. In this brief, we evaluate a way in which a cerebellar-
like structure can store a model in the granular and molecular
layers. Furthermore, we study how its microstructure and input
representations (context labels and sensorimotor signals) can
efficiently support model abstraction toward delivering accurate
corrective torque values for increasing precision during different-
object manipulation. We also describe how the explicit (object-
related input labels) and implicit state input representations
(sensorimotor signals) complement each other to better handle
different models and allow interpolation between two already
stored models. This facilitates accurate corrections during manip-
ulations of new objects taking advantage of already stored
models.

Index Terms— Adaptive, biological control system, cerebellum
architecture, learning, robot, spiking neuron.

I. INTRODUCTION

In the framework of a control task, many successful
approaches which use different kinds of “learning” (adapta-
tion mechanisms) in the control loop have been developed:
reinforcement learning [1], where systems can learn to opti-
mize their behavior making use of rewards and punishments,
genetic algorithms [2], where control systems are evolved
over many generations mimicking the process of natural
evolution, recurrent artificial neural networks [3], and also,
recently approaches based on biologically realistic spiking
neural networks (SNNs) [4], [5]. Most of the works focused
on SNNs addressing issues such as computational complexity
and real-time feasibility [6], biologically plausible models of
different complexity [7], effects of biological learning rules
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[8], etc. This brief represents a multidisciplinary research
effort in which SNNs adopting a cerebellar-like neural topol-
ogy are used with biologically plausible neural models. We
evaluate how the topology of a biological neuronal circuit
is specifically related with its potential functionality, start-
ing from electrophysiological recordings (validating the cell
models) to a proposed biologically plausible spiking control
solution.

More concretely, in this brief, we describe how a SNN
mimicking a cerebellar micro-structure allows an internal
corrective model abstraction. By adopting a cerebellar-like
network, we explore how different sensor representations
can be efficiently used for a corrective model abstraction
corresponding to different manipulated objects. When a new
object is manipulated and the system detects that significant
trajectory errors are being obtained, the abstracted internal
model adapts itself to match the new model (kinematic and
dynamic modifications of a base arm plant model). The stored
models to be used can be selected by explicit object-related
input signals (as specific input patterns generated for instance
from the visual sensory pathway) or implicit signals (such
as a haptic feedback). This can be seen as a “cognitive
engine” that abstracts the inherent object features through
perception-action loops and relates them with other incidental
properties, such as color, shape, etc. The cognition process
that relates both properties is important because it allows
the inference of inherent properties just by activating explicit
perceived primitives making possible to build up models of the
environment that describe how it will “react” when interacting
with it.

In the framework of a robot control task, manipulat-
ing objects that significantly affect the base kinematic and
dynamic model with bio-inspired schemes is an open issue
[5], [9], [10]. Biology seems to have developed (evolved) a
scalable control system capable of abstracting new models
in an incremental way in real time. This requires a smart
model abstraction engine which is believed to be largely
based on the cerebellum [11]. State-of-the-art simulation
tools [12] and also hardware platforms [13], [14] allow cell-
based simulation of nervous centers of certain complexity
in the framework of biologically relevant tasks. This allows
addressing studies in which the function and structure of
nervous centers are conjointly evaluated to better understand
how the system operation is based on cell and network
properties.

The working hypothesis and methodology of this brief can
be briefly described as follows:

1) we address a biologically relevant task which consists in
an accurate manipulation of objects which affect a base
(kinematic and dynamic) model of the base plant using
low power actuators;

1045–9227/$26.00 © 2011 IEEE
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2) we define and implement a spiking-neuron-based cere-
bellum model to evaluate how different properties of the
cerebellar model affect the functional performance of the
system.

II. MATERIAL AND METHODS

A. Experimental Setup. Interfacing the Cerebellum Model with
a Robot

1) Robot Plant: For the robot plant simulation, we have
implemented an interface between the simulator of the light-
weight-robot (LWR) developed at DLR [15] and the control
loop including the cerebellum module. The LWR robot is
a 7-DOF arm composed of revolute joints. For the sake of
simplicity, in our experiments, we used the first (we will refer
to it as q1), third (q2) and fifth joints (q3), keeping the other
ones fixed, limiting the number of degrees of freedom.

2) Training Trajectory: The described cerebellar model has
been tested on a task of smooth pursuit, in a similar way to
the one adopted by other authors [16]: a target moves along
a repeated trajectory, which is a composition of sinusoidal
components (this represents the desired trajectory). In previous
works, we evaluated a simpler cerebellar model in a target-
reaching task [5], [10] and a simple smooth pursuit task.
After these preliminary works, in this brief, we study context
switching capability, generalization-interpolation capability,
and different input sensorimotor representations.

We use an 8-like trajectory defined by in (1). The trajectories
of the individual joints have enough variation so that a
sufficiently rich movement is executed allowing dynamic robot
arm features to be revealed [17]. A multi-joint movement is
more complex from a mechanical standpoint than a summed
combination of single-jointed movements. This is due to the
interaction torque values generated by one linkage moving on
another. In this framework, the cerebellum role on the control
task becomes more complex

q1 = A sin π t, q2 = A sin (π t + θ) , q3 = A sin (π t + 2θ) .
(1)

3) Control Loop: It is largely assumed that the cerebellum
plays a major role in motor control [18]–[20]. Based on this
hypothesis, a wide range of cerebellar motor-control-system
approaches have been proposed in the literature (for a review,
the reader is referred to [21]). The central nervous system
(CNS) executes three relevant tasks. The desired trajectory
computation in visual coordinates, the task-space coordinate
translation into body coordinates, and finally, the motor com-
mand generation. As in [22], in this brief, we have adopted
the feedback-error learning (FEL) scheme in order to deal with
variations in the dynamics of the robot-arm [22] in connection
with a crude inverse dynamic model. But in contrast with
the adaptation modules used by Miller et al. [20], we use
a biologically plausible neural model as described in the next
section. Using FEL, the association cortex supplies the motor
cortex with the desired trajectory in body coordinates, where
the motor command is generated using an inverse dynamic
arm model.

Kawato et al. [22] relate different components of the control
scheme with the biological counterpart. As described in [22],

Fig. 1. Control loop.

the spinocerebellum-magnocellular red nucleus system pro-
vides an accurate internal neural model of the dynamics of
the musculoskeletal system which is learned by sensing the
result of the movement. The cerebrocerebellum-parvocellular
red nucleus system provides a crude internal neural model of
the inverse-dynamics of the musculoskeletal system which is
acquired while monitoring the desired trajectory.

The crude inverse dynamic model and the dynamical model
work together by means of updating the motor command and
predicting possible errors in the movement. As illustrated in
Fig. 1, the cerebellar pathways are structured in a feedforward
architecture, in which only information about sensory conse-
quences of incorrect commands is obtained (i.e., the difference
between actual and desired joint positions of the arm). We
developed our cerebellar-based control loop according to this
model as illustrated in Fig. 1.

We have also built a module to translate a small set of analog
signals into a sparse cell-based spike-timing representation
(spatio-temporal population coding). They encode the arm’s
desired and actual states (position and velocity) as well as
contextual information. This module has been implemented
using a set of mossy fibers (MFs) with specific receptive fields
covering the working range of the different state variables.

B. Cerebellum Model

For extensive spiking network simulations, we have further
developed and used an advanced event-driven simulator based
on lookup Tables EDLUT [23]. EDLUT is an open-source tool
[5] which accelerates the simulation of SNNs by compiling the
dynamic response of pre-defined cell models into lookup tables
before the actual network simulation. The proposed cerebellar
architecture (Fig. 2) consists of the following layers:

1) MFs: MFs carry both contextual information and sensory
joint information. A MF is modeled by a leaky I & F neuron,
whose input current is calculated using overlapping radial basis
functions as receptive fields in the value space of the input
signals.

2) Granular Layer (1500 Cells): This layer represents a
simplified cerebellar granular layer. The information given by
MFs is transformed into a sparse representation in the granule
layer [24]. Each granular cell (GR) has four excitatory input
connections: three of them from randomly chosen joint-related
MF groups and another one from a context-related MF. Parallel
fibers (PFs) are the output of this layer.
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Fig. 2. Cerebellum configuration inputs encoding the movement (desired
arm states, actual sensorimotor signals and context-related signals) are sent
(upward arrow) through the PFs. Error-related inputs are sent (upper down-
ward arrow) through the CFs. Outputs are provided by the DCN cells (lower
downward arrow).

3) Climbing Fibers (CFs) (48 CFs): This layer is composed
of six groups of eight CFs each. It carries the IO output which
encodes teaching spike trains (related to the error) for the
supervised learning in the PF–PC connections.

4) Purkinje Cells (PC) (48 Cells): They are divided into
six groups of eight cells. Each GR is connected to 80% of
the PCs. Each PC receives a single teaching signal from a CF.
PF–PC synaptic conductances are modified by the learning
mechanism during the training process.

5) Deep Cerebellar Nuclei Cells (DCN) (24 Cells): The
cerebellum model output is generated by six groups of these
cells. The corrective torque value of each joint is encoded by a
couple of these groups, one group is dedicated to compensate
positive errors (agonist) and the other one is dedicated to
compensate negative errors (antagonist). Each neuron group in
the DCN receives excitation from every MF cell and inhibition
from the two corresponding PCs. In this way, the subcircuit
PC–DCN–IO is organized in six microzones, three of them for
joint positive corrections (one per joint) and the other three of
them for joint negative corrections (one per joint). The DCN
outputs are added as corrective activity in the control loop.

The MFs encode input representation in a rather specific
way and the granular cells integrate information from different
MFs. These characteristics partially embed functional roles
of the inhibitory loop driven by the Golgi cells. Therefore,
although Golgi cells have not been explicitly included, part of
their functional roles has been integrated into the system.

C. Learning Process

It is well known that the cerebellum not only learns
sequences of pre-defined voluntary movements but also adapts
itself to external influences. This behavior seems to be very
difficult to analyze, but the cerebellum presents a regular
structured architecture that facilitates the study of how learning
may take place in our context-driven scenario using this
topology.

Although there seems to be an adaptation process at many
sites within the cerebellar structure [25], the main synaptic
adaptation driven by teaching or temporal signals (from the IO)
seems to take place at the PF–PC synapses. We have adopted a

plasticity mechanism that drives the modification of the PF–PC
synapses in the cerebellar model, based on the concept of
“eligibility trace” [16]. This trace aims to relate spikes from
IO error-related activity and the previous activity of the PF that
is supposed to have generated this error signal. The eligibility
trace idea stems from experimental evidence showing that a
spike in the CF afferent to a PC is more likely to depress
a PF–PC synapse if the corresponding PF has been firing
between 50 and 200 ms before the CF spike arrives at the PC
[16], [26]. This is indicated in (3) [5] where the integration
kernel k(t) is defined in (2). A marginal peak occurs in
the learning rule (around 450 ms after spike arrival) due
to the event-driven simulation scheme (mathematical expres-
sion based on exponential functions modulating a periodic
kernel, this presents a little hump), its impact in the global
learning amount is negligible (4%) and can be considered as
non-specific noise. In comparison with the previous learning
schemes [5], [10] in similar cerebellum structures, this one
allows to shift the maximum peak independently from the peak
width. Therefore, we can tune the control loops to different
sensorimotor delays and can narrow the maximum peak to
allow more specific learning.

We have used a simplified spiking cerebellar neural network
with spike-timing dependent plasticity (STDP). This plas-
ticity has been implemented including long-term depression
(LTD) and long-term potentiation (LTP) mechanisms in the
following.

1) LTD produces a synaptic efficacy decrease when a spike
from the IO reaches a PC. The IO output activity
is interpreted as an error signal [18], [21], triggering
a weight depression mechanism in synapses (PF–PC
connections) depending on the received activity from the
PFs. To calculate this amount of decrease, this previous
activity is convolved with an integral kernel as defined
by (2). Different expressions can be used for the learning
rule [8]. This kernel mainly takes into account all the
PF spikes which arrived 100 ms before the IO spike
to overcome the effect of transmission delays of this
range on sensory and motor signals (see Fig. 1). After
this mechanism is repetitively activated, when the same
pattern of PFs appears, the PC will not fire, in such
a way, they will not inhibit its corresponding DCN
cells [16], [27].

2) LTP produces a fixed increase in synaptic efficacy each
time a spike arrives through a PF at the corresponding
PC as defined by (2). For the sake of synaptic conduc-
tance equilibrium, LTD is accompanied by the opposite
process (LTP), which takes place at this same synaptic
site [28].

LT D : ∀i,�wi = −
∫ I Ospiket ime

−∞
k

(
t − tI Ospike

)
LT P : �wi = α (2)

k (t) = e−(t−t post synapt ic spike)

× sin
(
t − tpost synapt ic spike

)20
. (3)

These two learning rule components need to be tuned
complementing each other to be able to efficiently reduce
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action errors in the framework of a control task. In biological
systems, sensors (for instance, skin sensors and propriocep-
tors) are not directly connected to the cerebellum. They pass
through the cuneate nucleus [29] and other centers along
the sensory pathway where signals seem to be efficiently
organized to better address the cerebellar processing engine. In
this brief, we investigate how the cerebellum model can take
advantage of different cerebellar input representations during
object manipulation.

D. Mossy Layer Configuration in the Cerebellar Model

Different mossy layer configuration models have been pro-
posed in order to improve the cerebellum storage capability.

1) Base “Desired-proprioceptive configuration.” It consists
of 120 joint-related fibers, the MF layer has been divided
into six groups of 20 fibers, three groups of fibers
encoding joint positions (one group per joint) and the
other three, encoding joint velocities.

2) Encoding Approach (EC) model. Explicit Context EC
(16 context-related fibers plus 120 joint-related fibers):
This mossy layer configuration uses the base desired-
proprioceptive configuration adding 16 context-related
fibers. The contextual information is coded by two
groups of eight fibers. An external signal (related to
the “label or any captured property” of the object, for
instance assuming information captured through visual
sensory system) feeds these dedicated-eight-grouped
fibers.

3) IC model. Implicit Context EC (240 joint-related fibers):
The MF layer consists of 12 groups of 20 fibers
and delivers the actual and desired joint velocity and
position information. It uses the base-desired proprio-
ceptive configuration and adds three groups of fibers
encoding actual joint positions and other three groups
encoding actual joint velocities. The implicit contex-
tual information is conveyed using these six groups
of fibers. The actual position and velocity “helps” the
cerebellum to recognize where and how far from the
ideal (desired) situation it is. These deviations implicitly
encode a “context-like” representation based on senso-
rimotor complexes.

4) EC & IC. Explicit and Implicit Context encoding
approach (16 context-related fibers plus 240 joint-related
fibers): It uses the base desired proprioceptive and
incorporates also IC and EC architectural specifications.
Thus, this MF layer is a combination of the EC and IC
models described above.

The main aim of searching a proper mossy layer config-
uration is to exploit the capability of the granule layer for
generating a sequence of active neuron populations without
recurrence. This sequence is able to efficiently represent the
passage of time (representation of different time passages are
related with different input signals). Our system takes advan-
tage of this spatiotemporal discrimination of input signals for
learning different contexts.

As indicated in Section II-B, afferent MFs are randomly
connected to granule cells, on average, four MFs [30] per
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Fig. 3. Similarity indices for a spatiotemporal activity between two activity
patterns using EC, IC, and IC & EC configurations. The values of indices are
represented in gray scale; black 0, white 1. (a), (c), (e) Left side panels show a
white diagonal band indicating a proper generation of a time-varying granular
activity population. EC presents a mean gray value of 0.18, IC leads to a
mean gray level of 0.101, and IC & EC leads to a mean gray value of 0.074.
(b), (d), (f) Right side panels show similarity indices for two contexts. The
darker the matrix is, the better uncorrelated activity patterns are. EC presents
a mean gray value of 0.024, IC leads to a mean gray value of 0.096, and IC
& EC achieves 0.044.

granule cell. When an input signal pattern arrives at the MFs,
a spatiotemporal activity pattern is generated and the popu-
lation of active neurons in the granule layer changes in time
according to this received input. In order to evaluate the non-
recurrence in this activation train, the following correlation
function (4) is used [31]:

C (t1, t2) =
∑

i
fi (t1) fi (t2)

√∑
i

f 2
i (t1)

√∑
i

f 2
i (t2)

(4)

where fi corresponds to the instantaneous frequency of the
ni neuron (frequency measured within a 20-ms time window).
The numerator calculates the inner product of the population
vector of active neurons at times t1 and t2, and the denom-
inator normalizes the vector length. C (t1, t2) takes values
from 0 to 1, 0 if two vectors are complementary, 1 if two
vectors are identical. To facilitate the production of accurate
corrective terms, different input signals shall generate different
spatiotemporal activity patterns. The following correlation
function is used to evaluate this point as indicated in (5):

C (t1, t2) =
∑

i
f (1)
i (t1) f (2)

i (t2)

√∑
i

f (1)2
i (t1)

√∑
i

f (2)2
i (t2)

(5)

where f (1)
i and f (2)

i denote the activities of the ni neuron at
time t under different input signals (1 and 2, respectively).

The left panels in Fig. 3(a), (c) and (e) shows the similarity
index using a t1 × t2 matrix within the active granular popu-
lation at t1 and t2. A wide white band, surrounding the main
diagonal, points out that the index decreases monotonically
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as the distance [t1–t2] increases. That means a one-to-one
correspondence between the active neuron population and
time. This implies that a dynamically active neuron activity
changing can represent the passage of time.

The right panels in Fig. 3(b), (d) and (f) show how different
input signals can be discriminated by different activity pat-
terns. The values of the similarity index are small suggesting
that the two represented activity patterns are independent of the
other one. Actual and desired entries of the IC configuration
vary during time leading to a richer codification within a single
context, while EC only uses desired entries varying along the
trajectory execution. On the other hand EC gives a better
granular activity codification between contexts by using its
specific contextual signals. IC has no specific entries helping to
distinguish activity patterns when using two different contexts.
IC & EC takes advantages from both configurations, it uses
the context and the position/velocity entries to produce a better
time-varying granular activity population.

E. Experimental Methods

We have carried out several experiments to evaluate the
capability of cerebellar architecture to select and abstract mod-
els using different cerebellar topologies. In these experiments,
objects which significantly affect the dynamics and kinematics
of the base plant model have been manipulated to evaluate
the performance of different cerebellar configurations. Finally,
we have also studied how interpolation/generalization can be
naturally done for different plant + object models which have
not been used during the training process. We divided the
experiments into the following groups.

1) Cerebellar input configuration including only context-
related signals (and desired arm states) (EC).

2) Cerebellar input configuration including only sensori-
motor representation (IC) (i.e., desired and actual arm
states).

3) Cerebellar input configuration including conjointly sen-
sorimotor and context-related signals (IC & EC).

For this purpose, we have used a set of benchmark trajecto-
ries that we repeat in each iteration and evaluate how learning
adapts the GR-PC weights to tune accurate corrective actions
in the control loop (Fig. 1).

F. Quantitative Performance Evaluation

The learning process performance is characterized by using
three estimates calculated from the mean absolute error (MAE)
curve. The accuracy gain estimates the error reduction rate
comparing the accuracy before and after learning. This esti-
mate helps to interpret the adaptation capability of the cere-
bellum when manipulating different objects, provided that the
initial error is different

Accuracy Gain = M AEinit ial −
[

1

n

n∑
i=0

M AE( f inal−i )

]
;

n = 30. (6)
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Fig. 4. Multi-context simulation with changes in dynamics and kinematics
using EC cerebellar input. Each sample represents the MAE evolution (sum
of error at different joints) for a trajectory execution (trial) during learning
with no context-related signals and with explicit context-related signals.
(a) Manipulating two different loads with and without context signals. Explicit
context signals reduce 68.31% the final average error and 70.73% the final
standard deviation. (b) Equivalent end-segment of the arm has been rotated in
certain angles π/2 and π/4. The corrective torque values should compensate
these different deviations in each context (with and without activated context
signals). Explicit context switching signals reduce 62.04% the final average
error and 26% the final standard deviation.

The final error (average error over the last 30 trials)

Final Error =
[

1

n

n∑
i=0

M AE( f inal−i )

]
; n = 30. (7)

The final error stability (standard deviation over the last
30 movement trials)

Final Error Stabili ty =
[

1

n

n∑
i=0

σ
(
M AE( f inal−i )

)];

n = 30. (8)

III. EXPERIMENTAL RESULTS

A. EC Cerebellar Input

The explicit context EC uses a set of MFs to explicitly iden-
tify the context, assuming that they carry information provided
by other areas of the CNS (such as vision which helps to
identify the correct model to be used) or even cognitive signals.
Therefore, a specific group of context-based MFs become
active when the corresponding context is present. In this way,
when a certain context becomes active, a GR population is
pre-sensitized due to the specific context-related signals. We
have randomly combined the sensor signals (desired position
and velocity) of the different joints and the context-related
signals (in the MF to GR connections) allowing granule cells
to receive inputs from different randomly selected MFs (at
the network-topology definition stage). In order to explicitly
evaluate the capability of these signals to separate neural
populations for different object models, each granule cell has
four synaptic input connections: three random MF entries
which deliver joint-related information and one MF which
delivers context-related signals. In this case, we have evaluated
the capability of the cerebellum model to efficiently use
these context-related signals to learn to separate models when
manipulating objects of different weights or different kinemat-
ics (deformation in the robot-plant end-segment) (Fig. 4).
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Fig. 5. Single-context simulation using EC and IC cerebellar input and
multi-context simulation with changes in kinematics and dynamics using
IC cerebellar input. (a) and (b) Manipulation of objects of different loads
(2 kg/1 kg) without context signals. Each sample represents the MAE for a
trajectory execution (trial). (c) MAE evolution during the learning process
in EC and IC with dynamics-changing contexts. Two contexts with different
loads are manipulated, switching every 15 trials. (d) MAE evolution for EC
and IC configurations and two contexts with different ending deformation
(kinematics change), switching every 15 trials.

B. IC Cerebellar Input

In this section, we define an implicit context encoding
approach (IC), where no context-identifying signals are used.
The sensor signals (actual position and velocity of the robot)
implicitly encode (through MFs) the context during object
manipulation. We have randomly combined the sensor signals
(position and velocity) of the different joints (in the MF to
GR connections) allowing granule cells to receive four inputs
from different randomly selected MFs. The context models are
distributed along cell populations. These cell populations are
dynamically changing during the learning process (because
the actual trajectory changes as corrective torque values are
learned and integrated). Each time a new context is activated,
the specific neural population is tuned due to the slightly
different sensorimotor signals during the trajectory execution.
The context switching in IC is done automatically and learning
is carried out in a non-destructive manner, learned contexts
are not destroyed (Fig. 5).The fact that IC transitions do not
need explicit contextual information may indicate that this
configuration allows interpolation between different learned
contexts. This capability is explored by making the cerebellum
learn two contexts alternately and then, presenting a new
intermediate context (Fig. 6).

As shown in Fig. 5, although EC has a faster convergence
speed, IC presents a lower final error (0.007 rad. average
final error in IC against 0.018 rad. in EC) and a more
stable behavior (0.002 rad. of standard deviation in IC against
0.006 rad. of standard deviation in EC) after the learning
process.
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Fig. 6. Multi-context simulation with changes in kinematics and dynamics
using IC cerebellar input. Interpolation capability. (a) After 450 trials of
15 iterations per context (2 kg/1 kg added alternatively to the robot arm),
a new 1.5 kg context is presented to the cerebellum. (b) After 450 trials of
15 iterations per context (the end-segment of the robot arm includes different
rotations: π/2 and π/4 angles alternatively), a new 5π/12 context is presented
to the cerebellum.

Accuracy gain, final error average and final standard devi-
ation are similar in IC and EC. EC develops a better inter-
context transition. Comparing EC with IC in a dynamic
context switching experiment, we obtain context switching
error discontinuities 47.6% larger and a standard deviation
24.7% higher in the EC explicitly canceling context switching
signals than in the IC configuration [Figs. 4(a) versus 5(c)].
This highlights the importance of actual sensorimotor signals
efficiently used in the IC configuration, compared to EC which
only used desired states during manipulation.

Finally, comparing EC with IC in a kinematic context
switching experiment, we obtain context switching error
discontinuities 32.85% larger and a final standard devia-
tion 16.71% higher in the EC without activating context
switching signals than in the IC configuration [Figs. 4(b)
versus 5(d) explicit context signals are efficiently used in
EC configuration].

C. IC Plus EC Cerebellar Input

In this section, we evaluate how the previous EC and IC
input representations are complementary. In this case, the
cerebellar architecture includes both inputs. The MFs arriving
in the cerebellum encode the desired states, the actual states
(positions and velocities), and also, context signals which
identify the current contexts.

In Fig. 7(c) IC & EC uses the pre-learned synaptic weights
obtained in previous contexts to deal with a new payload.
Nevertheless, sensorimotor state signals feeding MFs drive fast
to a new contextual adaptation. The kinematics interpolation
is not efficient [Fig. 7(d)], interpolation across kinematics
changes is not an easy task (not linear).

IC & EC configuration also becomes robust against incon-
gruent external context-related signals (for instance, extracted
from vision). As shown in Fig. 7(e), during each epoch,
the external context signal changes do not match the actual
object switching (i.e., the external context signal does not
remain constant while manipulating a 2 kg object and it
does not do it either when using a 1 kg object). Thus,
context 1 value in the first 2 kg-415-trial-context equals A and
context 2 value in the first 1 kg-15-trial-contexts equals B.
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Fig. 7. Multi-context simulation with changes in kinematics and dynamics
using EC, IC, and IC & EC cerebellar input. Interpolation of a new context
and robustness against incongruent contextual input signals. (a) Dynamics
correction task with different loads in the robot arm. (b) Kinematics correction
task with different deviations in the end-segment of the robot arm. (c) 1.5 kg
load is fixed to the end-segment of the robot. (d) 5π/12 rotation in the end-
segment of the robot is presented. (e) IC & EC configuration is able to avoid
non-congruent contextual signals. Context-related input signals are indicated
with highlighted colors in the x-axis of the plot.

In the following 15-trial-context switching trials, values A
and B are interchanged. The incoming external contextual
information is not congruent but, thanks to sensorimotor state
signals (actual position and velocity of IC configuration), the
cerebellum is able to deal with these “misleading” external
signals.

IV. CONCLUSION

We have proposed a new simple biologically plausible
cerebellar module which can abstract models of manipulated
objects that significantly affect the initial dynamics and also
kinematics of the plant (arm + object), providing corrective
torque values toward more accurate movements. The results
are obtained from object manipulation experiments. This
new cerebellar approach, with two representations, receiving
context-related inputs (EC) and actual sensory robot sig-
nals (IC) encoding the context during the experiments, has
been studied. The IC & EC cerebellar configuration takes
advantage of both configurations which complement each
other. Smoother inter-context transitions are achieved at a fast
convergence speed. It allows the interpolation of new con-
texts (different loads under manipulation) based on previously
acquired models. Moreover, a good learning curve profile in
long-term epochs can be achieved and finally, the capability
of “overcoming” misleading external contextual information,

making this cerebellar configuration robust against incongru-
ent representations (Fig. 7), is remarkable. Furthermore, the
results obtained with this kind of cerebellar architecture are
coherent with the experiments [32], [33]. Therefore, when
both representations congruently encode the context, they shall
complement each other, while when they are incongruent,
they interfere with each other. This is so because in the
implemented cerebellar architecture, context classification and
model abstraction tasks are carried out in a distributed manner.
No pre-classification process is executed to disambiguate
incongruent context identification. In our approach, we have
also evaluated how sensorimotor representation can overcome
incongruent incidental context-related signals (i.e., sensorimo-
tor representation dominating a context-related incongruent
signal).

In a classical machine learning approach, disambiguation
is usually explicitly done through a classification module
(decision making) that can be tuned to adopt a winner-takes-
all strategy and leads to a single context model to be recalled
even in this incongruent context representation. In biological
systems, this kind of pre-classification (disambiguation) mech-
anisms may be processed in other nervous centers, although
it may reduce the interpolation and generalization capabilities
of the cerebellar model presented.
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This work evaluates the capability of a spiking cerebellar model embedded in different loop architec-
tures (recurrent, forward, and forward&recurrent) to control a robotic arm (three degrees of freedom)
using a biologically-inspired approach. The implemented spiking network relies on synaptic plasticity
(long-term potentiation and long-term depression) to adapt and cope with perturbations in the manip-
ulation scenario: changes in dynamics and kinematics of the simulated robot. Furthermore, the effect
of several degrees of noise in the cerebellar input pathway (mossy fibers) was assessed depending on
the employed control architecture. The implemented cerebellar model managed to adapt in the three
control architectures to different dynamics and kinematics providing corrective actions for more accurate
movements. According to the obtained results, coupling both control architectures (forward&recurrent)
provides benefits of the two of them and leads to a higher robustness against noise.

Keywords: Cerebellum; STDP; robot simulation; learning; biological control system; noise.

1. Introduction

The efficiency and complexity of animal movement
suggest that the biological motor controller does not
consider the articulated animal limbs as strings of
independent linked bodies. The necessary force for
coordinated animal movements, such as reaching and
walking, is smartly and conjointly determined for
each joint. Due to the nonlinear relationship between
joint forces and limb movements and the need to sat-
isfy certain constraints on a movement in different
controlling scenarios, biology seems to use advanced
controlling mechanisms of interest also to advanced
robotics.

Although numerous details of cerebellar micro-
circuitry have been determined, the functional con-
tribution of the cerebellum to the motor system
function remains an open issue. The complexity and
the sophistication of the primate motor control sys-
tem are overwhelming. This motor control is highly
multi-dimensional and non-linear, making its char-
acterization troublesome.1 However, the cerebellum
is commonly supposed to be responsible for timing,
fine-tuning, and coordinating the motor system.2–4

It is fair to think that emulating the functionality
of the cerebellar microcircuitry would allow the con-
trol of non-stiff-joint “robotic arms” properly driven
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with relatively low-power actuators (as is the case
of biological counterparts).5 Very diverse models
have been proposed and evaluated.6–11 The cerebel-
lum is usually divided into three parts. One region
that is mainly associated with the vestibular sys-
tem, another part related with the brainstem and
spinal cord, and a third region, the cerebrocerebel-
lum, that has extensive interconnections with the
cerebral cortex and is likely to be involved in motor
coordination.12 However, this knowledge about the
cerebellar cortex has not been used in robotics as
successfully as in biology.

The control function of any individual region of
the cerebellum relies both on its internal microcir-
cuitry and on the way it is connected with other
parts of the motor system.13,14 These connections
and their functionality still remain an open issue.15

The cerebellum is involved in a feedback loop for
muscle control. When the cortex sends a message
for motor movement to the lower motor neurons in
the brain stem and to the spinal cord, it also sends
a copy of this message to the cerebellum. This is
transmitted from the pyramidal fibers in the cortex
on the cortico-pontine-cerebellar tract to the cerebel-
lum. Additionally, the cerebellum also receives infor-
mation from muscle spindles, joints and tendons.16

Therefore, the cerebellum receives motor commands
and also, actual sensory signals. This allows the
extraction of corrective models on the “manipulating
arm” for accurate movements. Traditionally, when
considering the control system, it is assumed that the
efference copy of motor commands predicts the sen-
sory consequences of actions, including the sensori-
motor pathways delays (the spinal cord inverse model
transforms the torques into muscle tension) and also
allowing its integration with the sensory information
related with the actual state.17 The concept of inter-
nal feedback from an internal model of the arm (or
body)18–20 has been extensively accepted (known as
the forward model and formed in the cerebellum via
the cerebrocerebellar communication loop).

Furthermore, a wide range of cerebellar motor-
control-system approaches has been developed. This
is a very active research field (for a review, please,
refer to Ref. 10).

By using a forward model combined with an
inverse dynamics model, the efference copy of the
motor command output from the inverse model can

be used as an input for a forward model. A for-
ward dynamics transformation is able to predict the
dynamics of the muscles from the state of the system
and therefore, can be used to compute a controller
output.

On the other hand, it has been recently sug-
gested that cerebellar microzones typically receive
mossy fiber (MFs) inputs that are related to the out-
puts of those microzones.21 This configuration leads
to a rather modular scheme. This modularity seems
to facilitate the potential role of the cerebellum in
adding corrective signals on the sensory space rather
than onto motor signals. There are biological evi-
dences that suggest that motor cortex functionality
is heterogeneous allowing both control possibilities
(addition of corrective terms in both the sensory and
motor space).22 The cerebellum computing correc-
tive terms in the sensory space have motivated some
authors to suggest a different cerebellar control loop
which is called recurrent model.14,21

This biologically inspired cerebellar architecture
based on the cerebellar connectivity can deal with
the so-called distal error problem. The natural error
signal for learning motor commands is the differ-
ence between actual and correct commands (‘motor
error’). However, in autonomous systems, the correct
command is typically unknown. Only information
about the sensory consequences of incorrect com-
mands is available, which leads to an error repre-
sentation (based on sensory signals). This is related
to the motor error; however, this relation may be
complex. Therefore, sensory-based error estimations
are called ‘distal errors’. How to use this information
to drive motor learning is the distal error (or motor
error) problem.

These two cerebellar architectures have been pro-
posed as biologically-inspired approaches. Thus, it is
fair to think that both architectures may co-exist and
work together in the cerebellum developing a comple-
mentary functionality (see Fig. 1). This is the main
issue under study in this paper.

The configuration illustrated in Fig. 1 has
remarkable analogies with the classical inner loop/
outer loop control architecture (see Fig. 2).

The inner loop/outer loop architecture groups
many classical robot-control strategies from the
literature.23,24 This separation of the inner loop and
outer loop terms is important for several reasons; in
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Fig. 1. Biological circuitry projection of the recurrent-
forward control loops.

Fig. 2. Inner/outer control loop.

the inner loop, the calculation of the torque com-
mands (non-linear terms) is computed to achieve a
better precision and computation speed. Besides, the
structure of the inner loop control remains fixed;
what control designers may modify more freely to
customize the control system architecture is mainly
in the outer loop. Thus, the outer loop can be totally
modified without restrictions to achieve several other
goals without the need to modify the dedicated inner
loop control. For instance, additional compensation
terms may be included in the outer loop to enhance
robustness to parametric uncertainty, unknown
dynamics, and external disturbances or tracking of

task space trajectories instead of joint space trajec-
tories, regulating both motion and force. Drawing an
analogy between the inner/outer control loop and the
presented composed control architecture, the inner
loop corresponds to the forward architecture that
supplies the torque corrections and the outer con-
trol loop corresponds to the recurrent architecture
that supplies the position/velocity corrections.

This paper studies how an adaptive spiking
cerebellum-like module which includes long-term
depression (LTD) and long-term potentiation (LTP)
at parallel-fiber to Purkinje-cell synapses (PF-PC) is
embedded in diverse control loops (forward, recur-
rent, and a combination of both architectures) to
infer corrective models which compensate deviations
in the robot trajectory when the dynamics and kine-
matics of the controlled robotic arm are altered and
noise (related to the inherent noise of the muscle
spindle signal) is introduced in the cerebellar input
(MFs).25,26 The main goal of this work is a compar-
ative evaluation of these control architectures which
shows how forward and recurrent architectures com-
plement each other in the framework of a manip-
ulation task and how robustly they behave in the
presence of noise.

2. Methods

As was exposed in the introduction section, nowa-
days, biologically inspired neural processing is an
open issue where spiking neural networks play a fun-
damental role.27–36 For a comprehensive review on
spiking neural networks, please, refer to Ref. 37.

For extensive spiking network simulations, an
advanced event-driven simulator based on lookup
tables (EDLUT) has been further developed and
used.38,39

For the robot plant simulation and the evalu-
ated control loops, an interface between the EDLUT
and the simulator of the LWR (Light-Weight Robot)
developed at DLR (German Aerospace Center)40 has
been implemented. In this way, we were able to
evaluate robotic movements of the LWR manipulat-
ing different objects that significantly affected the
dynamics and kinematics of the robotic arm.

2.1. Robotic arm simulator

Different control loops have been integrated within
the robot plant simulator of the LWR.40 The
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simulated-robot-plant physical characteristics can be
dynamically modified to match different contexts.
The LWR robot is a 7-Degrees-of-Freedom (DOF)
arm consisting of revolute joints. For the sake of
simplicity, in our experiments, the number of actual
joints (degrees of freedom) has been reduced to three.
Specifically, the first (we will refer to it as Q1),
second (Q2), and fifth joint (Q3) have been used
and the others have been kept fixed. This robot is
especially suited for interactions with humans. In
this scenario, the use of robots based on low-power
actuators in order to reduce danger for humans in
case of malfunctioning is of special interest. Further-
more, the accuracy in position and trajectory is not
fully exploitable because of the dynamically changing
interaction characteristics (non-static and structured
scenario as is the case in other robotic control appli-
cation fields). Figure 3 includes a simple scheme of
the robot arm indicating the three non-fixed joints
used in our experiments.

2.2. Control scheme

Lee Miller in Ref. 41 proposes a cerebellar control
system based on a predictive signal (supplied by the
cerebellum) with the aim of giving progressive and

Fig. 3. LWR robot-arm. The three joints used in our
experiments are explicitly indicated, all other joints are
fixed.

proper motor control commands. According to this
approach, our first cerebellar control-loop model has
been developed as a forward (FD) cerebellar control.

In this control loop (see Fig. 4(a)), the desired
arm states (robot end-effector position at each time)
are generated by the trajectory planner to follow
the desired trajectory. This trajectory in Cartesian
coordinates is translated into joint coordinates (posi-
tions (Q), velocities (Q̇), and accelerations (Q̈)) by
the trajectory generator that consists of a crude
inverse kinematic model representing the output of
the motor cortex and other motor areas (while motor
cortex provides a basic command which is appro-
priate for slow single-joint movements, the cerebel-
lum provides the necessary correction for multi-joint
movements).26 In our experiment, the robot follows
the trajectory described in Eq. (1) (see Fig. 5).

Q1 = 0.1 sin(πt), Q2 = 0.1 sin(πt + θ),

Q3 = 0.1 sin(πt + 2θ).
(1)

In the forward architecture, these desired arm
states in joint coordinates are used at each time step
to compute crude torque commands (crude inverse
dynamic robot model). They are also used together
with the contextual information (which could be
obtained through visual, haptic information or cogni-
tive “labels” as model profiles) related to the manip-
ulated object, as input to the cerebellum model
which produces the predictive corrective commands
(τcorrective) that are added to these crude torque
commands (τdesired). Total torque (τ) is delayed (on
account of delays of the biological motor pathways,
this is δ1 in Fig. 4) and supplied to the robot plant.
The difference (ε) between the actual robot tra-
jectory and the desired one is also delayed (δ2 in
Fig. 4) and used by the teaching signal computa-
tion module to calculate the inferior olive (IO) activ-
ity that reaches the cerebellum through the climbing
fibers. This signal will be used by the cerebellum to
adapt its output as described in the learning process
section.

On the other hand, the presented recurrent archi-
tecture helps the cerebellum to find out temporal
regularities in trajectory distortions. In this way, the
cerebellum is able to compute predictive corrective
position and velocity commands to compensate the
deviation caused by the dynamic and kinematic mod-
ifications on the base-robot arm.
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(a) (b)

(c)

Fig. 4. Forward (FD), recurrent (RR), and forward&recurrent control loop (FD&RR). (a) In this FD control loop, the
adaptive cerebellar module is embedded in the forward control loop and delivers add-on corrective torques to compensate
deviations in the base dynamics and kinematics of the robotic arm model when manipulating different objects. (b) Recur-
rent control loop, the adaptive cerebellar model infers a model from the error signal related to a sensorimotor input
to produce effective corrective position and velocity add-on terms. In this way, instead of propagating data from input
to output as the forward architecture does, the recurrent architecture also propagates data from later processing stages to
earlier ones. (c) FD&RR control loop delivers add-on corrective actions to compensate deviations in the base dynamic and
kinematic robotic arm model when manipulating objects. In this forward&recurrent control loop, the adaptive cerebellar
modules infer a model of effective corrective position, velocity, and torque add-on terms from the error signal related to
sensorimotor input.

According to this hypothesis and based on the
control loop described in Ref. 14, the recurrent
control architecture shown in Fig. 4(b) has been
developed.

In the recurrent architecture (RR), the arm
states in joint coordinates are also used together
(joint related information) with the contextual infor-
mation (related to the manipulated object) as

input to the cerebellum which produces the pre-
dictive corrective position and velocity commands
(qcorrective, qdcorrective) which are added to the
desired position and velocity trajectory commands.
The final total torque computed by the crude
inverse dynamics and the error signal are handled
in the same way as the previously-presented forward
architecture.
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Fig. 5. Three-joint periodic trajectory describing 8-shaped movements: (a) Angular coordinates of each joint of the Light
Weight Robot, (b) 3D view of the robot end-effector trajectory in Cartesian coordinates. This 8-like trajectory ensures
a sufficiently rich movement that allows robot arm dynamics to be revealed.42 The interaction torque values generated
in a multi-joint movement demand a more complex cerebellar control task than a summed combination of single-jointed
movements.

These two cerebellar architectures have been pro-
posed as biologically-inspired approaches; thus, it is
interesting to study their potential complementary
role in a control correcting scenario. Therefore, the
developed forward&recurrent (FD&RR) architecture
as presented in Fig. 4(c) will be evaluated.

Under normal conditions, without extra mass
added to the robot end effector, the “crude inverse
dynamic robot” module calculates rough motor com-
mands to control the robotic arm. Under altered
dynamics conditions, in contrast, the rough motor
commands are very inaccurate to compensate for the
new undergone forces (inertia, etc.), and this leads
to distortions in the performed trajectories. During
repeated trials, the cerebellar model is able to learn
a corrective dynamics model for each manipulated
object and supplies:

(a) Corrective motor torques in FD architecture.
(b) Corrective trajectory positions and velocities in

RR architecture.
(c) Corrective motor torques and corrective tra-

jectory position and velocities in FD&RR
architecture.

2.3. EDLUT: Spiking neuron simulator

EDLUT is an open software platform which allows
fast event-driven simulation of relatively-complex

neural networks through an innovative method: the
neural network43 simulations are split into the two
stages; Cell behavior characterization: each neural
model included in the network (usually defined by
a set of differential equations which govern the neu-
ral state) is simulated for every possible neural state
and the consequent evolution of each neural state
variable is stored in lookup tables. Then, in a sec-
ond stage, when a simulation of a network containing
these models is required, it can be performed without
requiring a computationally-costly numerical proce-
dure for solving the differential equations defining
the neural model. EDLUT is used for the simulation
of the embedded cerebellar module.

2.4. Neural models

The simulated spiking network consists of two dif-
ferent integrate-and-fire (I&F) cell types.43 The
used cell models are a modified version of the
spike-response model (SRM) with synapses modeled
as input-driven conductance.44,45 Thus, the neuron
models account for dynamic synaptic conductance
rather than simply for constant current flows, pro-
viding an improved description over simpler I&F
models.46

The synaptic conductance follows a decaying
exponential function triggered by input spikes as
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stated in Eq. (2):

gexc(t) =

{
0, t < t0

gexc(t0)e−
(t−t0)

τexc t ≥ t0
(2a)

ginh(t) =




0, t < t0

ginh(t0)e
− (t−t0)

τinh t ≥ t0
(2b)

where gexc and ginh represent the excitatory and
inhibitory synaptic conductance. τexc and τinh rep-
resent the corresponding synaptic time constants.
Finally t0 represents the last spike time arrival
(already computed).38 This exponential representa-
tion has several advantages. Firstly, it is an effective
representation of realistic synaptic conductance. Sec-
ondly, each synapse type requires only a single state
variable per neuron, because the effect of input spikes
through several synapses of the same type can sim-
ply be recursively summed when updating the total
conductance if they have the same time constants.
Therefore, when an input spike is received at time t,
for example, through an excitatory synapse, its cor-
responding conductance gexc(pre−spike)(t) is abruptly
incremented in a term Gexc,j as described in Eq. (3):

gexc(post−spike)(t) = Gexc,j + gexc(pre−spike)(t). (3)

Gexc,j is the weight of synapse j (a similar relation
holds for inhibitory synapses) and gexc(pre/post−spike)

represents the excitatory synaptic conductance
before (pre) and after (post) the spike arrival,
respectively.

In our simulations, the synaptic parameters have
been chosen to represent excitatory AMPA-receptor-
mediated synapse time constants and inhibitory
GABAergic synapse time constants of cerebellar
granule cells.47–51 Note that different cells might
have different parameters (Table 1).52–55

The neuron membrane potential Vm at time t is
defined by differential Eq. (4).

Cm
dVm

dt
= gexc(t)(Eexc − Vm) + ginh(t)(Einh − Vm)

+ Grest(Erest − Vm). (4)

Where the conductance values gexc(t) and ginh(t)
integrate all the contributions received through
individual excitatory and inhibitory synapses respec-
tively, Grest represents the resting conductance, and

Table 1. Parameters of the cell types.

Parameter Granule cell Purkinje cell

Refractory period 1ms 2 ms
Membrane capacitance 2 pF 400 pF
∗Total excitatory 1 nS · 100 1.3 nS·

peak conductance ·175000 · 10%∗
Total inhibitory peak

conductance
1 nS · 200 3 nS · 150

Threshold −40mV −52mV
Resting potential −70mV −70mV
Resting conductance 0.2 nS 16 nS
Resting time constant

(τm)
10ms 25 ms

Excitatory-synapse
time constant (τexc)

0.5 ms 0.5ms

Inhibitory-synapse time
constant (τinh)

10ms 1.6ms

Note: Parameters obtained from the following papers:

Granule cell (GrC)47–51 and Purkinje cell (PC)52–55.

*Where 10% means the ratio of active connections PF-

PC (out of the total 175000 PFs).

Eexc, Einh, and Erest represent the corresponding
reversal potentials. Equation (4) is amenable to
numerical analysis. In this way, Vm, gexc, and ginh,
can be calculated for a given time after a previous
neural state or input spike allowing the event-driven
simulation scheme. The firing time (tf ) is the time
when the membrane potential (Vm) reaches the fir-
ing threshold (Vth) and an output spike is emitted.
It can be calculated from the membrane potential
evolution.

Table 1 shows the equation parameters corre-
sponding to the two neural models used in the sim-
ulated cerebellum.

2.5. Cerebellum model

Two different cerebellar module configurations based
on the scheme of Fig. 6 have been used. The first one
corresponds to the previously called forward control
architecture providing corrective torque terms and
the second one corresponds to the recurrent control
architecture providing corrective terms in the sen-
sory space. Here we briefly indicate the different cere-
bellar module layers:

(i) Mossy fibers (256 fibers) (MFs): Mossy fibers
carry both contextual information and joint sen-
sory information related to desired and actual
positions and velocities. An MF is modeled as a
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Fig. 6. Cerebellum model scheme. In FD and RR con-
figurations, the cerebellar input, which encodes both the
desired and actual position and velocity of each joint dur-
ing the trajectory, is conveyed (upward arrow) through
the mossy fibers (MFs) to the granular layer (crossed
arrow indicates a random connectivity, i.e. each Granular
cell receiving four randomly chosen MFs). Inputs encod-
ing the error are sent (upper downward arrow) through
the inferior olive (IO). Cells of the deep cerebellar nuclei
(DCN) collect activity from the MFs (excitatory inputs)
and the Purkinje cells (inhibitory inputs) and provide the
cerebellar outputs (lower downward arrow). The DCN
output is added as a corrective activity in the control
loop. In the forward-architecture the output is added as
corrective torques to the control torques (Fig. 4(a)). In
the recurrent-architecture cerebellum configuration, the
output is added as trajectory corrections (in position and
velocity) in the control loop (Fig. 4(b)). Both outputs
work complementarily in Fig. 4(c).

leaky I&F neuron, whose input current is cal-
culated using overlapping Gaussian functions
as receptive fields on the input-variable value
space.39 This is carried out by modeling the con-
tribution received from muscle or skin related
afferents at a high level of abstraction. This
cerebellar input layer (MFs) has been divided
into 14 groups of fibers: 12 groups of twenty-
grouped fibers encode both actual and desired
joint velocity and position sensor information;
the other 2 groups encode the context. The
explicit contextual information is encoded by
these 2 groups of eight-grouped cells (16 context
input fibers). These MFs encode information
assumed to be received through other sensory
systems (such as vision). Each different context

Fig. 7. Granular layer model. Explicit and Implicit con-
text encoding approach.59 Each granule cell receives exci-
tation from an explicit-context-encoding fiber and three
other randomly chosen MFs from the current and desired
position and velocity groups.

(object under manipulation) activates differ-
ently this population of neurons. Figure 7 illus-
trates this input connectivity.

(ii) Granular layer (1500 cells) (GR): A simpli-
fied granular layer of the cerebellum has been
designed with the purpose of obtaining suit-
able signals at parallel fiber (PF) signals. The
information provided by MFs is transformed
into a sparse representation that facilitates dis-
crimination of very similar inputs in the large
granule cell (GR) layer, 56 in which each cell
receives four excitatory connections: three con-
nections from randomly chosen joint-related
MFs groups and the other one, from a context-
related MF group. PFs are the output of this
layer. The sensorimotor corrective models are
learned and stored as weight values at the
PF-PC connections.

(iii) Climbing fibers (CF) (48 climbing fibers in for-
ward architecture, 96 climbing fibers in recurrent
architecture): This layer consists of 6 groups of
CFs. In recurrent architecture, each group is
composed by 16 CFs (each of them is subdi-
vided in 2 subgroups of 8 CFs). In the forward
architecture, each group is composed by 8 CFs.
Each CF carries the teaching spikes (obtained
from error signals) from the IO to a Purkinje
cell.
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(iv) Purkinje Cells (PC) (48 Purkinje cells in for-
ward architecture) (96 Purkinje cells in recur-
rent architecture): In the forward architecture,
this layer is divided into 6 groups of 8 cells.
In the recurrent architecture, this layer is com-
posed by 6 groups of 16 PCs; each group is also
subdivided into 2 subgroups of 8 Purkinje cells.
Each granule layer cell is connected to 80 per
cent of PCs. Each PC receives the teaching sig-
nals used for the synaptic plasticity from a CF.
Every two PCs; a cell of the deep-cerebellar-
nuclei is inhibited. The PF-PC synaptic conduc-
tances are set to an initial value (15nS) at the
beginning of the simulation, and are modified
by the learning mechanism during the training
process. This value is significantly lower in the
corresponding rat cerebellum synapses.57 How-
ever, a reduced version of the cerebellum (1500
GRs) is being modeled; therefore, each PC only
receives activity from 1200 PFs (80% of GR). In
a full model of the cerebellum, each PC should
receive activity from 150000PFs.58 Therefore,
PF-PC weight values have been scaled in order
to obtain a similar PC excitation.

(v) Deep Cerebellar Nucleus cells (DCN) (24 DCN
cells in forward architecture) (48 DCN cells in
recurrent architecture): In the forward model,
the cerebellum output is generated by 6 groups
of these cells (2 groups per joint) whose activ-
ity provides corrective actions to the specified
arm commands. Each neuron group in the DCN
receives excitation from every MF and inhibi-
tion from the two corresponding PCs. In this
way, the sub circuit PC-DCN-IO is organized in
six microzones. In the forward architecture, the
cerebellar corrective output (torque) for each
joint is encoded by a couple of these groups. One
group is dedicated to compensate for negative
errors (agonist) and the other one is dedicated
to compensate for positive errors (antagonist).
In the case of the recurrent architecture, the
cerebellum output is generated by 6 groups of
these cells; 3 groups correspond to the joint–
position corrections (one group per joint) and
the other three groups correspond to the joint–
velocity corrections. Each group is subdivided
into 2 subgroups (of 4 cells); one subgroup han-
dles positive error corrections and the other one
handles negative error corrections.

2.6. Learning process

Although there seems to exist adaptation processes
at several sites within the cerebellar circuitry,60,61

one of the main synaptic adaptation mechanisms
(induced by CF activity) seems to be the long-
term depression (LTD) at PF-PC synapses62,63 that
has been correlated to cerebellar motor learning.64

Therefore, the IO output (CF activity) is interpreted
as an error-related signal 65–68 which drives this plas-
ticity. When the conductivity of a PF-PC synapse
becomes very low by this adaptation, the correspond-
ing PC will not inhibit its corresponding deep cere-
bellar nucleus cells.56,69 Another type of plasticity,
long-term potentiation (LTP), which occurs at the
same site, does not require the activation of CF70

and compensates the effect of LTD.
Spike-timing-dependent plasticity (STDP) mech-

anisms to reproduce these adaptation processes have
been implemented.71 Since LTD synaptic plastic-
ity requires the co-activation of PF and CF input,
every time a CF spike is received by a PC, the
conductance of all PF synapses corresponding to
that PC are decreased according to Eq. (6a). That
is, the past spike activity received through each
PF is convolved with the integral kernel defined by
Eq. (5) and the result is used to obtain the corre-
sponding conductance decreases. This integral ker-
nel, which correlates the IO and PF activity, was
designed in such a way that it shows a peak at 100
milliseconds72–74; which makes the PF activity that
was received 100ms before the CF spike relevant.
This time delay matches the sensorimotor delays of
our system (see Fig. 4). After this mechanism is
repetitively activated, when the same pattern of PF
activation appears, the PC will not become active
and the corresponding DCN will produce activity
recognizing the learned pattern. The opposite adap-
tation process (LTP) is implemented by increasing
the weight of a PF-PC synapse each time it trans-
mits a spike as defined in Eq. (6b).39,43,68,71

k(t) = e−(
t−t0

τ ) sin
(

2π

(
t − t0

τ

))20

. (5)

LTD : ∀ i, ∆wi

= β

∫ IOspike

−∞
k(tIOspike − t)δ(t)PFi

dt. (6a)

LTP : ∆wi = α. (6b)
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Where t0 is a time constant determined by the bio-
logical path delay which is fixed to 100ms and τ is a
time reference which is set to 1 s in order to normalize
the arguments in the learning rule. ∆wi represents
the synaptic weight increment at the ith PF reaching
that PC, tIOspike stands for the time in which the cor-
responding CF transmits a spike, δ(t)PFi is a Dirac
delta function which represents the activity in the ith
PF (1 when the PF carries a spike, 0 when it does
not). Finally α and β are constant values that modu-
late the synaptic weight changes at PF-PC synapses
(α = 0.005 and β = −0.1).

2.7. The error signal drives teaching
signal

The trajectory position/velocity error is used to cal-
culate the teaching signal. This teaching signal fol-
lows Eq. (7).

εpositioni
= (Qdesiredi

− Qactuali)[(t + tdelays) − ti].

εvelocityi
= (Q̇desiredi

− Q̇actuali)[(t + tdelays) − ti].

i = 1, 2, . . . n, joints

(7)

And the computed error in the forward and recur-
rent architectures is given by Eq. (8).

FDεdelayedi
= kpi · εpositioni

+ kvi · εvelocityi
;

RRεpdelayedi
= kpi · εpositioni

;

RRεvdelayedi
= kvi · εvelocityi

i = 1, 2 . . . n, joints.

(8)

Where kpi · εpositioni represents the product of a con-
stant value (gain) at each joint and the position error
in this joint (difference between desired joint position
and actual joint position (Qdesired − Qactual)).

kvi · εvelocityi represents the product between a
constant value (gain) at each joint and the velocity
error in this joint (difference between desired joint
velocity and actual joint velocity (Q̇desired−Q̇actual)).

Position/velocity error signals are delayed to
align them in time according to biological delay path-
ways (tdelays represents the signal delays in the con-
trol loop). Biologically speaking, this time-matching
of the desired and actual joint states can be explained
by the fact that the trajectory error would be
detected at the level of the spinal cord, through a
direct drive from the gamma motoneurons to the
spinal cord.75

IO cells respond with probabilistic Poisson pro-
cess encoding the teaching signal into a low frequency
probabilistic spike train (from 0 to 10Hz, average
1 Hz).76

2.8. Decoding the cerebellar output

The output variables τcorrective (in the FD configura-
tion) or (q, q̇)corrective (in the RR configuration) are
extracted from the firing rates of the DCN belonging
to the related population, Eq. (9).

τ
+/−
corrective/(q, q̇)+/−

corrective =
4∑

j=1

v̄j(t). (9)

Where v̄j(t) is the firing rate of neuron j at time
t, and the over-line indicates that the measures
are averaged over a sliding time window of 100ms,
inspired by the low frequency filtering performed by
motoneurons.

2.9. Experimental methods

Firstly, the behavior of different control architectures
has been studied in a noisy scenario by using a Gaus-
sian/uniform additive white noise on MF input sig-
nals. Table 2 indicates the different tested levels of
noise.

The MFs signals are driven when an animal per-
forms different activities. When an arm is moved
along a learned trajectory, this arm movement is
accompanied by predictable changes occurring pri-
marily in MFs inputs reporting kinesthetics of this
movement. Noise on the produced neural control sig-
nal (which may vary the firing time of motor neu-
rons) will cause deviation in actual trajectories from
the desired ones: Q(t) = Qdesired(t) + ε(t) where
Qdesired represents the desired trajectory/velocities
to be followed. We have studied how the system
behaves against two noise models (Table 2): (a) ε is a
random signal with uniform distribution and a non-
repeatable seed, (b) ε is a random signal with Gaus-
sian distribution and zero mean. Although Golgi cells

Table 2. Noise levels on mossy fiber signals.

SNR = 10 log
E[x2(n)]

ε2(n)
Uniform Gaussian

distribution distribution

Noise 1x 32 dB 23 dB
Noise 2x 18 dB 15.5 dB
Noise 4x 4 dB 8dB
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seem to play a crucial role in removing noise,77 the
evaluated cerebellar circuitry may help to accomplish
this task.

Different added noise levels were checked. The
used Signal-to-Noise-Ratio can be seen in Table 2.

In addition, different experiments have been also
carried out to evaluate how different biologically-
inspired control architectures work by abstracting
models and switching between different contexts
with a suitable cerebellar configuration.

3. Results

3.1. Noise on MF input

The learning process is evaluated by using the Mean
Absolute Error (MAE) curve. For the calculation
of the MAE of a trajectory execution, the addi-
tion of the error in radians produced by each joint
independently along the whole trajectory has been
used. 800 trials of the defined 8-shaped trajectory
using the FD, RR, and FD&RR control-loop archi-
tectures have been executed. The robot end effector
was loaded with 2 kg to increase the inertia (thus, the
initial dynamics model needs to be corrected through
learning).

Figure 8 shows the global mean absolute error
(MAE) evolution obtained from the robot joint coor-
dinates in radians. The noise was set to 1x, 2x, and
4x and was generated from a uniform distribution (a,
b, and c plots, respectively) and a Gaussian distri-
bution (d, e, and f plots).

As it is shown in Fig. 8, FD&RR architecture
remains more stable against random noise than FD
and RR architectures used independently. When the
random noise level is 1x, FD and FD&RR responses
are similar, but the more noise there is, the better
response is obtained in FD&RR compared to RR and
FD. In Figs. 8(b) and 8(c), it is easy to see that the
convergence speed and output stability is better in
FD&RR. FD&RR uses both configurations in a com-
plementary way, to support FD with the corrections
provided by RR. This causes FD&RR to have more
stability and better performance when the noise is
higher.

White Gaussian noise (Figs. 8(a)–8(c)) allows a
good precision in the cerebellum output correction
(torque predictions); prediction errors remain highly
delimited around mean values. The probability den-
sity function has its maximum value at the mean,

that is, during the learning process, the generated
noise values tend to accumulate around the mean,
the cerebellum learns this tendency and compen-
sates it. In contrast, white uniform noise (Figs. 8(d)–
8(f)) makes prediction torques less accurate since its
probability density function does not have a single
maximum value (thus, this is a harder task). The
generated noise values do not tend to accumulate
around any specific value therefore; the cerebellum
cannot easily abstract any tendency information.

3.2. Context switching between two
dynamic/kinematic models

Firstly, a set of experiments have been executed to
study the capability of the cerebellar model to infer
different corrective models when the dynamics of the
robotic arm is modified by manipulating different
objects using FD, RR, and FD&RR architectures.
During a first learning process, the robot was loaded
with a 1kg weight and executed 450 trials of the
8-like trajectory (Fig. 9(a)). During a second learn-
ing process, the robot was loaded with a 2 kg weight
(Fig. 9(b)).

As shown in Figs. 9(a) and 9(b), FD&RR archi-
tecture takes advantage of both configurations; it
uses the cerebellar corrections in torques and in posi-
tions and velocities to provide a better profile in the
obtained MAE curves.

In order to evaluate the ability of the cerebellar
module to infer and store different corrective mod-
els simultaneously using different control-loop archi-
tectures, an experiment in which the dynamics of
the robotic arm is changed during the learning pro-
cess every 15 trials has been carried out. The context
alternates between manipulating a 2 kg object and a
1 kg object (Fig. 9(c)). The context-related cerebellar
input is supplied with different signals in each con-
text to enable the cerebellum to differentiate both
contexts allowing different models (contexts) to be
efficiently learned and retrieved in a non-destructive
manner. Finally, the three different proposed control
architectures (RR, FD, and FD&RR) are compared
in a kinematic context switching scenario (Fig. 9(d)).
This kinematic context switching scenario consists of
a deformation of the end-effector (angle).

In RR architecture, the relationship between the
produced robot-arm state error and the cerebellar
output is direct, the cerebellum receives the position
and velocity error-related signals, which are properly
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Fig. 8. Accuracy evolution of the three control architectures (FD, RR, and FD&RR) when introducing noise on input
signals of MFs. Mean absolute error (MAE) of the joint coordinates in radians of the robot loaded with a 2 kg weight using
forward, recurrent, and FD&RR architectures during a learning process of 800 trials of the 8-like trajectory execution.
(a), (b), and (c) correspond to 1x, 2x, and 4x additive noise respectively using a uniform distribution. (d), (e), and (f)
correspond to 1x, 2x, and 4x additive noise respectively using a Gaussian distribution.

provided by CFs, and cerebellar outputs consist
of trajectory corrections of position and velocity,
being these input and output dimensions equivalent.
Therefore, the cerebellum does not need to imple-
ment a complex model representation translation.
With this dimension matching, the cerebellum is able
to learn and provide a quick response (a faster con-
vergence is obtained in RR than in FD in Figs. 9(a)
and 9(b)). Nevertheless, our crude inverse dynamic
robot models need to be fed with clean and con-
tinuous corrected inputs in order to supply accu-
rate torque values which command the robotic arm
properly. Due to these required input characteristics
of this dynamic model, the final torque commands in

RR architecture are not as good as the ones deliv-
ered by the FD architecture (the RR MAE error
curve is less stable than the FD case). The accuracy
of the cerebellum corrective output involves making
a trade-off between number of cells and simulation
time.

In the FD architecture, the accuracy is not
improved by correcting the input of the robot crude
inverse dynamics; the cerebellum supplies torque
command corrections almost directly to the robotic
arm (see Fig. 4(a)). However, in the FD architecture,
the relationship between the produced robot-arm
state error and the cerebellar output is not straight-
forward. The position and velocity error signal is



September 22, 2011 16:12
S0129065711002900

Adaptive Cerebellar Spiking Model Embedded in the Control Loop 397

0 100 200 300 400
0

0.1

0.2
Global error.1kg added

Trials

M
A

E
 (

ra
d)

0 100 200 300 400
0

0.2

0.4
Global error.2kg added

Trials

M
A

E
 (

ra
d)

(a) (b)

0 200 400 600 800
0

0.2

0.4

Global error.
Switching 2kg/1kg.15 Iterations

Trials

M
A

E
 (

ra
d)

 

700 850

0.05

0.1
Zoom

Trials

(c)

0 200 400 600 800
0

0.2

0.4

Global error.
Switching (5pi/12)/(pi/6).15 Iterations

Trials

M
A

E
 (

ra
d)

700 850
0

0.05

0.1
Zoom

Trials

(d)

FD RR FD&RR

Fig. 9. Accuracy evolution of the three control architectures with and without context switching. Mean absolute error
(MAE) of the robot joint coordinates in radians using FD, RR, and FD&RR architectures executing the 8-like trajectory.
(a) and (b) The context is not changed: The robot manipulates a 1 kg object and a 2 kg object respectively during a
450-trial learning process. (c) The dynamics of the robotic arm is alternately changed between the two contexts every
15 trials. In the first context, the end segment of the robot arm is loaded with a 2 kg object. In the second one, it is
loaded with a 1kg object. (d) The kinematics of the plant is alternately changed between two contexts every 15 trials:
in the first context, the robot must follow the trajectory using an end segment which is deformed 5π/12 radians. In the
second one, the robot end segment is deformed π/6 radians (this corresponds to kinematics changes that may be caused
by manipulating an object of a certain length).

conveyed by CFs while cerebellar output supplies
torque corrections. These input and output dimen-
sions are not equivalent, the cerebellum learning task
is of higher complexity. Thus, the learning conver-
gence is slower but the command torques are more
precise (FD MAE error curve is more stable than the
one of the RR architecture).

Again, FD&RR combines the advantages of both
the RR and the FD architectures. It has a high
convergence speed and good output stability after

learning. FD&RR uses the position and velocity
corrections given by RR to facilitate the FD torque
correction task, and they mutually complete each
other.

Figure 9(c) shows the MAE evolution of a 900-
trial learning process. It is shown that the learning
is performed in a non-destructive manner since once
the final error for each context is reached, this error
value is maintained stable when the context changes
(therefore, the previously-learned context model was



September 22, 2011 16:12
S0129065711002900

398 N. R. Luque et al.

not destroyed). This feature relies on the separation
capability of the granular layer for sensory signals
related to different contexts. Again, FD&RR reaches
a better behavior compared to RR and FD architec-
tures (Fig. 9(c)). FD&RR allows better inter-context
transitions (error peaks between two different con-
texts are almost negligible because of its superior
convergence speed (thanks to the RR loop)) and it
also achieves a better final stability.

The MAE evolution of a 900-trial learning pro-
cess is shown in Fig. 9(d). The results are simi-
lar to the dynamics context-switching scenario, in
single-context learning (as we have within 15 iter-
ations), high convergence speed, and good per-
formance learning curve profile in the long term
seem to be desirable aims. RR makes the transi-
tion between contexts softer; in the long term, no
transition peaks are observed. When the kinemat-
ics of the robotic plant changes, no inertia ten-
sors are involved, so the “crude inverse dynamic
robot model” module has an easier task in com-
puting the proper new torques. On the other hand,
FD provides a better curve performance than RR
(no crude inverse dynamic robot model is involved
in processing the cerebellum output). As shown in
Fig. 9(d), FD&RR configuration takes advantage of
both loops obtaining smoother transitions between
contexts and a good learning curve profile in long the
term.

4. Conclusions

This work has focused on studying biologically-
inspired robot-arm control architectures under
dynamic and kinematic perturbations of the manip-
ulation scenario. Furthermore, it has evaluated
different control loops (RR, FD, and FD&RR) in
several noisy scenarios. A cerebellar adaptive mod-
ule embedded in these loops could effectively provide
torque/position&velocity corrections to compensate
for deviations in the dynamics/kinematics of a base
robotic arm model (due to the manipulation of dif-
ferent objects and deformations of the end effector)
increasing the movement accuracy.

The cerebellar model included an input represen-
tation which encodes context-specific inputs and cur-
rent sensory signals encoding the actual arm states
during the experiment.

It has been evaluated how a temporal-correlation
kernel driving an error-related LTD and a com-
pensatory LTP component (which complement each
other) can achieve an effective adaptation of the cor-
rective cerebellar output.

The obtained results indicate that coupling both
control loop architectures (FD&RR) leads to a high
robustness against noise. Employing the recurrent
architecture (RR) to ensure a faster convergence in
learned profile curve dynamics has been combined
with exploiting the fact that the forward architec-
ture (FD) provides a better accuracy gain and out-
put stability in a noisy scenario.

In the same way, the results demonstrate that
the composite control architecture in context switch-
ing has the capability to infer and store different
corrective models simultaneously under dynamic/
kinematic modifications better than FD or RR con-
figurations on their own.

The assumption that the cerebellum is involved
in forward modeling for motor control is familiar
in the literature.78,79 Our results suggest that both
FD and RR loops could be present in the biological
motor control in order to achieve a better perfor-
mance. In fact, this proposed architecture (FD&RR)
is compatible with several neurophysiological find-
ings. Firstly, several studies have reported relations
between motor cortex activity and various kine-
matic parameters of the motor output such as dis-
tance and speed80–82 as well as parameters related
to the dynamics of the movement.22 As the motor
cortex has been described as one of the targets of
the cerebellar output,83 the cerebellar output could
influence these kinematic (RR loop) and dynamic
parameters (FD loop). And secondly, results of virus
tracing studies have shown that the regions of the
cerebellar cortex that receive input from the motor
cortex are the same as those that project to the
motor cortex.84 These observations suggest that sev-
eral closed-loop circuits may be present in the cere-
brocerebellar circuits as it occurs in the FD&RR
architecture.

As future work, the scalability of these cerebellar
configurations, the potential role of new nervous cir-
cuits, such as the cuneate nucleus and Golgi cells in
noisy scenarios, other kinds of plasticity, and cell fea-
tures and finally, scalability on the number of robot-
plant joints will be studied.
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In biological systems, instead of actual encoders at different joints, proprioception signals are acquired through 

distributed receptive fields. In robotics, a single and accurate sensor output per link (encoder) is commonly used to 

track the position and the velocity. Interfacing bio-inspired control systems with spiking neural networks emulating 

the cerebellum with conventional robots is not a straight forward task. Therefore, it is necessary to adapt this one-

dimensional measure (encoder output) into a multidimensional space (inputs for a spiking neural network) to 

connect, for instance, the spiking cerebellar architecture; i.e. a translation from an analog space into a distributed 

population coding in terms of spikes. This paper analyzes how evolved receptive fields (optimized towards 

information transmission) can efficiently generate a sensorimotor representation that facilitates its discrimination 

from other “sensorimotor states”. This can be seen as an abstraction of the Cuneate Nucleus (CN) functionality in a 

robot-arm scenario. We model the CN as a spiking neuron population coding in time according to the response of 

mechanoreceptors during a multi-joint movement in a robot joint space. An encoding scheme that takes into 

account the relative spiking time of the signals propagating from peripheral nerve fibers to second-order 

somatosensory neurons is proposed. Due to the enormous number of possible encodings, we have applied an 

evolutionary algorithm to evolve the sensory receptive field representation from random to optimized encoding. 

Following the nature-inspired analogy, evolved configurations have shown to outperform simple hand-tuned 

configurations and other homogenized configurations based on the solution provided by the optimization engine 

(evolutionary algorithm). We have used artificial evolutionary engines as the optimization tool to circumvent non-

linearity responses in receptive fields. 

Keywords: Receptive Field, Evolutionary Algorithm, Parallelism, Population Coding, Cuneate Nucleus, Spiking 

Neural Network, Robot.

1.  Introduction 

There is an active interdisciplinary field called 

Neurobotics in which actual robots are controlled by 

bio-inspired neural processing engines. Besides other 

potential applications, this kind of set ups are important 

for understanding neurobiological computational 

principles (system neuroscience), specifically, some 

issues under study are how sensorimotor representations 

are integrated and efficiently used in accurate 

manipulation tasks,
1-3

 how spike timing based on 

different sensory representations can help to enhance 

information transmission
4,5

 and be efficiently used by 

biologically plausible neural systems 
6-12

 (such as 

cerebellar-like structures).
13

 

It is well known that the cerebellum constitutes a 

fundamental part in motor systems.
13-17

 The cerebellum 

is fed by inputs from the cerebellar cortex, providing a 

contribution in fast and precise movements.
18

 This is 

crucial in the fine control of the temporal evolution of 

fast ballistic movements,
19

 that is, extremely fast 

movements that are impossible to be modified by 

feedback circuits because the complete movement 

muscle sequence control has to be planned in 

advance.
20,21

 

Furthermore, taking a look at the current research in 

robot labs, a new trend in constructing and controlling 

light-weight compliant robot arms 
22-24

 which mimic 

human arms can be seen. Such new robotic features 

pursue the search of new ways of control. In fact, 

controlling the dynamics of any of these kinds of robot 

arms is an open issue (there is no general established 

methodology developed yet).
25

 Since the cerebellum 

combines sensory information with the physical current 

state to generate motor signals, it is a proper candidate 
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for studying how these controlling problems are solved 

by nature. In that sense, cerebellum architecture, as a 

control scheme, has received much attention in the 

literature and different cerebellum computational models 

have been developed. Among others, the Cerebellar 

Model Articulation Controller (CMAC),
26

 the Adjustable 

Pattern Generator (APG),
27

 the Schweighofer-Arbib 

Model,
28

 or the Multiple Paired Forward-Inverse 

Model
29,30

 represent good state-of-the-art examples. All 

these models have something in common: they try to 

mimic the functionality of the cerebellum by making an 

abstraction of the cerebellum structure while keeping 

robotic control theory in mind. As a result, the 

approximations mentioned above configure their 

sensorimotor inputs to enhance their control aims. 

The cerebellum supervises and supplies corrective 

adjustments in motor commands
31,32

 which are generated 

in other encephalon zones. It receives continuous 

information from peripheral body parts (position, 

movement rhythm, interacting external forces, etc…) 

and, according to sensorial information, compares the 

physical state of each body part against the desired state 

which the motor system is trying to achieve.
33-35

 In the 

framework of errors (detected through this continuous 

comparison), proper corrective signals are transmitted to 

the motor system increasing or decreasing specific 

muscle activity.
36

 The cerebellar sensorial input is 

carried by mossy fibers
37

 (MFs), which constitute one of 

the major cerebellar afferent systems.
38

 MFs carry 

information from different sources; MFs from the 

pontine nuclei report on motor and sensory areas of the 

cerebellar cortex,
39-43

 MFs from cells in the CN handle 

information from forelimb muscle spindles
44

 related to 

position and movement,
45,46

 MFs from collaterals of 

cortical fibers carry a copy of descending motor 

commands to the cerebellum, and finally, MFs from the 

visual cortex supply information about movements in the 

visual space.
47

 Therefore, different kinds of MFs drive 

detailed information related to the external world and the 

desired/actual body movements/positions. As a result of 

that, it can be postulated that sensorial cerebellum inputs 

play a critical role in cerebellum functionality. 

Our system uses neural population coding
48

 for 

sensorimotor representation. Each neuron presents a 

distribution of responses over some set of inputs, and the 

responses of many neurons are combined to determine 

some information about the input state.
48,49

 Using this 

kind of coding, each input stimulus is represented by a 

set of spikes. However, the occurrence of these spikes 

strongly depends on the current generated by sensors 

and on which spikes subsequently reach the first-layer 

cells.  

In a reaching movement, the arm direction is 

encoded by means of neurons whose input current 

changes with the cosine of the difference between the 

stimulus angle and the cell’s preferred direction
50

 

(Cosine tuning). Each population vector cell contributes 

a vector in the direction of its preferred direction in 

relation to its current. Nevertheless, a simple reaching 

movement involves extracting spatial information 

including visual acquisition of the target, coordination of 

multi-modal proprioceptive signals, and a proper motor 

command generation to drive proper motor response 

towards the target.
51

 Usual reaching movements towards 

a target that we have already seen involve an internal 

representation of the target and limb positions, and also 

a coordinate transformation between different internal 

reference frames. A spiking population coding seems to 

be the best way to encode sensorial information to be 

consistent with biological control requirements.
52, 53

 This 

is also important to allow system level studies for the 

evaluation of the cerebellum functionality in the 

framework of accurate movement experiments. 
1,2

 

However, the integration of computational models 

with neurophysiologic observations in order to 

understand the main problems in motor control requires 

not only the cerebellum functionality to be considered 

(as is done in the CMAC, APG, and other approaches) 

but also, its biological architecture (cell-network) has to 

be taken into account. A necessary translation from 

analog domain sensor signals into spike based patterns 

compatible with a spiking cerebellar network needs to be 

developed. 

This paper tries to reveal the best way in which 

sensorimotor information in a common robot scenario 

can be handled to investigate an optimal encoding in 

terms of somatosensory information.  

To that aim, the followed methodology can be 

briefly described at the following points: 

 

(i) Firstly, we consider the execution of a biologically 

relevant reaching movement in a robot arm 

scenario. With that purpose, different trajectories 

are defined over a joint space. A biologically 

plausible translation from joint position/velocity 

measures to their corresponding spike train 

representation has been defined. Population coding 
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and tuning curves are used to be consistent with 

reaching arm movements.  

(ii) In order to make previous codifications more 

accurate, a bio-inspired Evolutionary Algorithm 

(EA) which optimizes the receptive fields towards 

maximizing sensorimotor information and state 

discrimination has been used. The combinatorial 

space to be explored towards an optimization is 

enormous; the EA seems to be the proper tool that 

unifies biology evolution and an optimization 

procedure.
54

 

(iii) Finally, the performance of the sensorial 

representations using different measures that take 

into account metrical properties of the spike train 

space has been evaluated. 

Therefore, the paper uses a new methodology in 

which an EA is used as an optimization engine towards 

reaching an efficient sensory representation to be further 

processed at the spiking based cerebellum. As a result, in 

this case, an EA is used for reverse engineering an 

abstraction of a biologically plausible model. Rather 

than finding an optimal fitness value of the cost 

function, the goal is to arrive at an efficient solution in 

terms of receptive fields in the sensory space. The cost 

function includes actual trajectories, which makes the 

experimental set up heavier but also more informative, 

enhancing the usefulness of the searching methodology 

carried on by the EA.  

2. Materials and methods 

This section describes the principles of the proposed 

methodology. An answer to different issues explicitly 

indicating what/why/how and the basis of the proposed 

approach is given. 

2.1.  Target reaching trajectories 

Anthropomorphic robotic arms, mimicking human arms, 

usually consist of three links (arm, forearm, and hand) 

which are connected with each other using motorized 

joints (shoulder, elbow, and wrist). Reaching involves 

bringing the endpoint of the robot arm to a desired target 

position. Therefore, the aim is to “connect” two points, 

the initial point, defined by the actual endpoint robot 

arm position and the final point, defined by the endpoint 

robot arm target position. The control system leads the 

sequence of motor actions to achieve the target. In a 

robotic arm (due to the redundancy in the degrees of 

freedom), there is an infinite number of possible 

trajectories that allow the arm to reach any given target 

point. A specific approach will be provided by a planner 

module. But even focusing on a single joint workspace 

(see Fig. 1) (shoulder, elbow, wrist), the movement can 

be performed in different ways, in smoother or abrupt 

movements (as indicated in Fig. 1). 

Taking into account both the ability of humans to 

generalize motor learning skills with a changeable 

duration/amplitude in a common workspace and the 

possibility of reaching a target point in infinite different 

ways, we designed a set of different trajectories (Fig. 1) 

that allows us to properly explore the workspace in a 

very simplified scenario. An optimal evolution of 

receptive fields in this workspace may provide us a 

generalized solution, i.e. a solution for this kind of 

movements. 

These trajectories are realistic both in terms of 

robotics (cubic polynomials, linear segments with 

parabolic blends
55

) and biological plausibility (smooth 

trajectories with a bell-shaped velocity profile (with 

different smooth profiles and different trajectory 

ranges)).
56,57

 

2.2.  From analog signals to spike patterns: 
Receptive fields 

When interacting with the real world, a representation of 

the external environment and the internal state of our 

body is supplied by the somatosensory system to the 

central nervous system. The afferent (sensory) 

information signals are propagated from peripheral nerve 

 

Fig. 1.  Trajectory benchmark. Within a single joint workspace 

(as shown in this plot) the actual movement can be done also 

in different ways, through different position/velocities 

profiles. rmax and rmin represent the maximum and the 

minimum values of the joint angle. 
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fibers to the central nervous system (spinal cord and 

brain).
58

 Each region of the skin is related to an 

individual cutaneous sensory nerve fiber (or a population 

of them). These skin regions are called receptive fields. 

Therefore, each nerve fiber has its associated receptive 

field, which overlaps with other receptive fields from 

other fibers. This overlapping is not fixed; the average 

overlapping degree between receptive fields is related to 

its body-location.
58

 

When a target reaching movement is executed, 

different body-parts, as muscles, tendons, and joints are 

articulated depending on their body-location along the 

followed trajectory. Sensory receptors (proprioceptors) 

are activated according to movement; thus, a time-

varying set of stimuli is produced, and its corresponding 

neural population varying activity is generated. In 

contrast, in a robot scenario, the only available sensory 

information is the one supplied by a single encoder for 

each link. That involves a translation between the joint 

position/velocity measures to a time-varying set of 

stimuli. This is illustrated in Fig. 2. At this point, to find 

out an optimal biologically plausible encoding scheme 

that allows “biological decoders” to take advantage of 

the codification is a non-trivial point. It is assumed that 

the firing rate of an individual sensory receptor follows a 

neural response which is characterized by Eq. (1) (also 

equivalent to a cosine tuning curve, that is, neurons’ 

firing rate varies as the angle between a sensory 

receptors’ preferred direction or angle varies). 
59

 

Therefore, a reaching movement execution will be 

represented with a sparse population of active cells 

which are changing with time. This coding mechanism 

facilitates the representation of the current sensorial state 

during the trajectory execution in an unambiguous way. 

The output of each receptive field (RF) in Fig. 2 is 

given by Eq. (1): 

( ) ( )
.errtI

n

2n2

maxminRi

2
i

2

ipref∑ −−−+= σπθθ
  (1) 

 

Fig. 2.  Population coding of receptor (proprioceptors) signals. The position of a revolute joint given by an encoder along a trajectory 

is translated into a population coding by means of a set of tuning curves which represent the current injected to Integrate & Fire 

(I&F) neurons by different sensory receptors (propioceptors). Tuning proprioceptor curves are overlapped mimicking peripheral 

nerve receptive fields in the human arm. Each value of a proprioceptor output signal (I current) is integrated using an I&F neuron 

whose output spikes represent the activity provided by the mossy fibers. At the end, in each step time, a spike train is obtained from 

the mossy fibers that represent the sensory inputs to the cerebellum module.  
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Where [rmin, rmax] is the joint range in radians, θ is 

the actual position, θpref  is the  RF preferred direction 

which in this work is simplified by the RF centroid (RF 

responses maximally during a trajectory execution near  

this centroid, and its response decreases when the 

trajectory execution increasingly differs from the 

preferred direction or RF centroid in this case), σ is the 

width of the RF, i is the identifier of each RF (each one 

is linked to its corresponding mossy fiber), 2πn is a 

subtractive term used to refer the actual position to the 

first-360-degrees (the maximal range of any revolute 

joint is ideally 360º), and finally, IRi is the input current 

from the corresponding RFi.  

RFs are distributed along the range of each joint 

(Fig. 2) and they have certain overlap (as in the case of 

peripheral nerve receptive fields). 

Each value of a proprioceptor output signal is 

integrated using a leaky integrate-and-fire neuron model 

shown in Eq. (2), which determines the output activity 

that drives the cuneate nucleus activity in the same way 

as the mossy fiber activity from cells in the CN handles 

information from forelimb muscle spindles.  

 

( ) .IRtv Riiidt

dv
mi

i +−=τ   (2) 

Related to the integrated and fire cell dynamics,
 60

 τmi 

is the resting time constant, vi, the membrane potential, 

IRi, the input current from the corresponding receptive 

field, and Ri is related to the resting conductance of the 

membrane. Finally, the i sub-index term defines the 

identifier of the related mossy fiber. Therefore, the 

mossy fiber layer will consist of a group of leaky I&F 

neurons connected to their corresponding target granule 

cells. 

 At this point, the problem in this population coding 

scheme is not only how to distribute propioceptors 

(centroid and width) along the workspace, but also how 

many RFs should be used in order to enhance the 

information transfer between sensor signals and their 

spike representation. 

2.3.  The evolutionary algorithm as optimization 
engine  

The distribution of peripheral nerve receptive fields in a 

human arm is the result of a continuous test and trial 

process of biological evolution through millions of 

years. Taking a look around our surrounding 

environment, there are many examples of well-adapted 

organisms (in fact, as many as living forms), pointing 

out that evolution is a universal solver which overcomes 

difficulties presented by nature. Hence, evolutionary 

algorithms
61

 seem to be a proper tool to optimize the 

receptive fields of our cerebellum architecture according 

to artificial evolution and keeping the analogy (though at 

a very high abstraction level) with the way in which 

nature solved the biological problem.  

Strictly speaking, evolutionary algorithms are a set 

of bio-inspired techniques for optimization based in the 

Darwinian process of natural selection. As in the 

evolution of species, those individuals (solutions) 

showing to be the fittest ones are preferentially selected 

for mating, so that their offspring will inherit their genes 

through the course of generations. Iteratively, selection 

acts as a filter for genes and just those belonging to the 

best solutions are able to overcome the selection 

pressure and recombine forming higher order solutions. 

It is within that process where the stochastic based 

search of an evolutionary algorithm has been shown to 

succeed in many optimization problems.
62,63

 A genetic 

algorithm (i.e. a sub-class of an evolutionary algorithm) 

is used to obtain, through evolution, a near-optimal 

peripheral nerve receptive field distribution. 

 In Table 1, the pseudo-code of an evolutionary 

algorithm where a population of plausible solutions (P) 

is iteratively improved from random is shown. This 

Table 1. Pseudo code of a Generational EA 

/* The initial population is a random sampling of the search 

landscape*/ 

P <= Randomly generated initial population 

Fitness(P) 

       /*For a number of predefined generations*/ 

Repeat until termination 

      /*Every generation, we create a new population (Paux) of 

evolved individuals*/ 

   Repeat P times 

      Ind1 Ind2 <= Select 2 of the fittest individuals in P 

      NewInd1 NewInd2 <= Crossover(Ind1,Ind2) 

      NewInd1 <= Mutate(NewInd1) 

      NewInd2 <= Mutate(NewInd2) 

      Paux.add(NewInd1,NewInd2)    

   End Repeat 

     /* Evaluate individuals in population Paux */ 

   Fitness(Paux) 

    /* To keep elitism, we replace the worst individual in Paux with 

the best individual in P */ 

   Paux(individualworst) <= P(individualbest) 

   P <= Paux 

End Repeat 
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evolvable population (P) consists of Individuals (Ind) as 

indicated in Eq. (3). 

{ } .Ind,1jwhere,Ind,,Ind,IndP maxj21 KK ==  (3) 

Where the candidate solutions (Individuals) are 

encoded by Eq. (4). 

{ }{ } .RF,1iwhere,e,,e,e,RFInd maxi21max KK ==  (4) 

And finally, e is a receptive field defined in Eq. (5). 

( ).,e σθ=     (5) 

Where θ represents the centroid of the receptive field 

along the sensory space (preferred coordinate of 

receptive field e) and σ, the width of the receptive field 

(Fig. 3). Therefore, according to Fig. 2, each candidate 

solution presents a spike train response in time when a 

trajectory is executed. A set of executed trajectories 

produce a set of spike train responses. R denotes the set 

of spiking responses of a possible candidate solution 

along the followed trajectories as expressed in Eq. (6). 

The heuristic based search consists in projecting 

each individual encoding (Ind) into the problem space 

(i.e. using the Fitness function). Then, the fittest 

individuals are selected for recombination. As in the 

case of natural reproduction, crossover applies to a 

couple of individuals (Ind1 and Ind2), merging their 

encodings to produce descendants (NewInd1 and NewInd2). 

Furthermore, there are also small mutations in 

descendants in order to escape from local-optima 

attracting regions. Within this process, the best solution 

in every iteration (known as epoch) is preserved for the 

next one.  

2.4. Van Rossum distance based fitness function. 
Metrics for evaluating information transfer 

At this point, it is necessary to define a metric (goal 

function) to measure whether a solution A is better than 

a solution B. This is intimately related to the 

functionality assumed by the system. To that end, a 

metrical information transfer measure which is 

employed in order to assess the fitting of an evolved 

peripheral nerve receptive field distribution has been 

chosen. We have found no previous approach related to 

information transfer (Shannon’s mutual information, for 

instance) that takes into account the whole metrics of the 

spike response space.
64 In order to determine the 

quantity of information transmission carried on by  a 

large population of spikes (taking into consideration 

their metrical properties), a new entropy definition based 

on Ref. 65 is used. That facilitates the comparison 

between different spike populations generated by 

different receptive field distributions, as shown by Eq. 

(6). 

( ) ( ) ( ) ( ) .r,r
Rcard

1
log

Rcard

1
RH

Rr Rr

* ∑ ∑
∈ ∈′














′−= α (6) 

Where R is the set of spiking responses of a possible 

configuration of receptive fields along the followed 

trajectories, card(R) is the cardinal number of R, and 

finally, α is a similarity real function between the 

responses (r, r'). We use as a similarity function between 

two spike trains the van Rossum distance
66 

Dvr  defined 

in Eq.(8). The van Rossum based Real function α(r, r') 

will take values in the interval [0, 1] as a response to r, r' 

stimuli, as shown in Eq. (7). 

( )
( ) 1

vrDr,rotherwise

rr1r,r

−=′

′=↔=′

α

α
   (7) 

Eq. (6) means that the quantity of entropy in a 

system is proportional to the logarithm of possible 

different microstates presented by this system. 

Maximizing the entropy involves maximizing the 

quantity of possible microstates in the system. Keeping 

in mind this concept and looking backwards to our 

previously defined receptive field system, some relevant 

points can be clarified:  

 

Fig. 3.   Visual interpretation of the Population (P) to be 

evolved. Each individual consists of a vector containing a 

variable number of RFs defined by their own preferred 

coordinate θpref and the width of the receptive field  

associated.  



From Sensors to Spikes: Evolving Receptive Fields to Enhance Sensorimotor Information in a Robot-Arm 7

(a) Each set of evolvable receptive fields produces 

a set of spiking stimuli for the previously 

described trajectory benchmark. 

(b) A population coding that represents the 

different sensorial states in an unambiguous 

way when each of the trajectories belonging to 

the benchmark is executed is desirable (Fig. 4). 

(c) Maximizing the number of possible population 

coding microstates improves the representation 

of different sensorial states. Each microstate 

might be unambiguously represented in just one 

single way. 

(d) In order to differentiate a couple of spike train 

sets, van Rossum distance is used. If two sets of 

spike trains are equal, the entropy is zero, the 

more difference between both sets, the higher 

the entropy will be, i.e. the number of 

microstates representing different sensorial 

states increases in proportion with the entropy. 

According to Eq. (6), entropy depends on α, 

and α depends on van Rossum distance as well. 

Therefore, an optimal representation will be 

ensured only if we evolve receptive fields to 

maximize the minimal distance between any of 

two single spike based states of the whole 

generated set of spike trains for any benchmark 

trajectory. 

2.4.1. Similarity function 

As it was previously indicated, we have chosen a 

similarity function based on the van Rossum distance. 
66

 

This function is related to the distance introduced by 

Victor and Purpura,
 67,68

 but is computationally more 

efficient, Eq. (8), and has a more natural physiological 

interpretation. 

( ) ( ) ( )[ ] .dttrtr
t

1
r,rD

0

2

c
tc

2
vr ∫

∞

′−=′  (8) 

Where our spike train (r) is defined by a set of first 

spikes generated along a certain time window by the 

implemented spiking neural network. It is assumed that 

all spikes generated by the spiking neural network are 

identical; being the timing of its spikes the key 

information in a spike train. Therefore, it is reasonable 

to model a spike train as a sequence of identical, 

instantaneous Dirac delta functions (  (t)), representing 

individual spikes as expressed in Eq. (9.A). 

( ) ( ).tttr

M

i

i∑ −= δ
   

(9.A) 

 

 

Fig. 4.  Different mossy activities corresponding to two different receptive fields when a rectilinear trajectory is followed. A) 

Trajectory which is followed by a link of a robot-arm. B) Two configurations of receptive fields mapping the analog joint coordinate. 

C) Two spike populations (population coding) representing each sensorial state (vertical columns) along the executed trajectory. Each 

sensorial state highly depends on the input receptive field distribution. 
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( ) ( ) ( )
.ettHtr

M

i

ttt
i

ci∑ −−⋅−=
  

(9.B) 

In Eq. (9.B), each Dirac delta function Eq. (9.A) is 

substituted by an exponential function ( ) ci ttt
e

−− . H is the 

Heaviside step function (H(x) = 0 if x<0 and H(x) =1 if 

x≥0) and M is the number of events in the spike train. In 

Eq. (8), distance Dvr is calculated as the integration of 

the difference between r and r', which are spike-driven 

functions with exponential terms, as indicated in Eq. 

(9.B). Note that the resulting distance and, indeed, its 

interpretation depends upon the exponential decay 

constant, tc in Eq. (9.B). The distance also depends upon 

the number of spikes in the trains; it can be normalized 

dividing the number of spikes by M. 

2.4.2. Similarity measure 

The previously introduced similarity function Dvr 

depends on the tc parameter, (van Rossum cost 

parameter).
66

 This parameter determines the penalization 

cost of two spikes when calculating the distance between 

them; if the distance is higher than tc, the penalty will be 

one, the lower the distance is, the lower the penalty will 

be. According to Ref. 64, 65, the CN population code is 

able to discriminate different stimuli around 35ms after 

the first afferent spike; therefore, a tc value of 40ms is 

assumed. The codification has to respond in less than 

40ms to be consistent with biology, larger values shall 

be punished in the spike metric measure using this decay 

constant. Human micro-neurography recordings
52,53,64

 

(for distribution latencies of the first afferent spike, see 

Figs. 3 and 4 in Ref. 52) show that generated spike trains 

from different continuous stimuli have time lengths 

around 35ms on average. Hence, in order to be 

biologically coherent, a spike train (microstate) is 

generated for each 40ms time window providing sensor 

estimates through a spike-based pattern (Fig. 4.C). The 

goal function to be calculated per executed trajectory is 

given by Eq. (10). 

 
( )( )

{ } .estrajectoriofnumbernwhere,rR

j,iandRr,r,rDmin

n

jivr

j,i
ji

min

==

∈∈= +

≠
ΝΦ

 (10) 

 

 Where ri and rj represent a pair of spike trains as a 

response to two different stimuli. A 40ms time window 

activity after the stimulus presentation is taken into 

account to determine the stimulus response (i.e. in a 1 

second trajectory, 25 time windows of 40ms are 

obtained; therefore, consequently 25 spike trains 

corresponding to 25 microstates are obtained too). R is 

the whole set of spike patterns {rn} generated when 

following n trajectories. Dvr (ri, rj) represents the inter-

stimulus distances between responses of two different  

stimuli. We try to find out the minimal distance between 

any pair of spikes in the whole set of time windows Φmin. 

This process is implemented one by one in each 

benchmark trajectory   
n
minΦ  obtaining Eq. (11): 

( ) .estrajectoriofnumbernwhere,
n

1
n

1

n
min =∑Φ (11) 

On the other hand, to be consistent with biology, 

intra-stimulus distance has been implemented by means 

of using a slightly stochastic threshold voltage in 

integrated and fire neurons (Eq. 2). This means that the 

same stimulus may lead to a slightly different response 

(Fig. 5). The same input (trajectory) is presented three 

times to our receptive field; the whole obtained spike set 

is used in Eq. (11). Therefore, the effect of firing 

 
Fig. 5.  Intra-Stimulus Distance. A 40ms length time window showing two slightly different responses (cross and star markers) of the 

receptive field configurations shown in 4.B (left side) for the same input due to stochasticity in the neural model. 
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probability in stochastic leaky I&F neurons is 

compensated in the cost function. 

2.4.3. Fitness function 

The target problem, the spike representation to be used, 

and how to measure the fitness of a particular solution 

(receptive field distribution) have been defined. Hence, 

the final global fitness function to be optimized is given 

by Eq. (12). 

( ) .estrajectoriofnumbern,
n

1
maxfitness

n

1

n
min =














= ∑ Φ (12) 

 

2.5.  Experimental setup 

As it was explained in the previous section, the 

optimization criterion is to find a combination of 

receptive fields capable of maximizing Eq. (12). That 

translates into a hard combinatorial and deceptive 

problem in which a good solution can be found near a 

poor region of the searching landscape. Specifically, up 

to 30 receptive fields are considered, each having 6000 

positions (i.e. each vector element that goes from rmin=-

6rad to rmax= 6rad in steps of 0.002rad is considered as a 

possible centroid’s position) and different coverage 

width (i.e. each value from σ =0.02 to σ=10 in steps of 

0.001 is considered as a possible width of the associated 

receptive field). That is, the combinatorial space can be 

roughly estimated to be around 10
169

. 

Furthermore, the time to simulate the fitness of a 

single solution is computationally expensive and can last 

several seconds even in current processors. Therefore, to 

alleviate the burden of a deterministic exploration of the 

combinatorial space, we have used an evolutionary 

algorithm in which receptive fields are represented using 

three vectors; the first one encodes the number of 

receptive fields to be used, the second one contains the 

position of the receptive fields covering the range that 

can be achieved by the joint, and the last one contains 

the width of the respective receptive fields. An initial 

random solution (in terms of the number of receptive 

fields, their position over the defined range of possible 

values per joint, and their width) is supplied to the 

evolutionary algorithm. Through evolution, the 

evolutionary algorithm drives the population to 

promising regions of the searching space towards near-

optimal solutions.  

It is remarkable that an evaluation of a single 

trajectory takes 0.645s in an Intel Core Quad Q6600 2.4 

GHz 4 GB RAM (the evaluation has been performed 

using MATLAB). An evaluation of the previously 

described benchmark takes 7.75 seconds; the evaluation 

of the whole population of 100 individuals takes almost 

13 minutes. An evaluation of such a population of over 

300 or more epochs/generations will take days. That 

means that finding an optimal solution in a reasonable 

time becomes a problem. Fortunately, the nature of the 

evolutionary algorithm is inherently suited to be 

parallelized, offering a straightforward way to be scaled 

up improving performance in terms of convergence 

time.
69,70

 The main idea is to speed-up the execution 

times by sharing the workload of the individuals among 

a pool of processors. To overcome the issue of 

computational time, a global parallel evolutionary 

algorithm has been implemented. This approach takes 

advantage of the parallelism at an evaluation level in the 

case of a very demanding fitness evaluation function (as 

is the case in this work). Global parallelization consists 

in the parallel evaluation of the individuals (i.e. 

candidate solutions),
71

 usually following a master-slave 

model. The algorithm runs on the master node and the 

individuals are sent for evaluation to the slaves. 

Additionally, the master is responsible for collecting the 

results and applying the genetic operators.  

In order to conduct the experiments, a 14 node 

computer cluster has been used. Each node has two 

Xeon E5320 processors at 1.86GHz, with four nuclei 

and 4 GBs of RAM at each node. 

3. Results 

This Results section is focused in how to validate this 

new proposed methodology. Therefore, this section is 

structured in different steps showing how this 

methodology should be applied when it is particularized 

for a certain experiment.  

Towards this aim, firstly, a predictable trajectory has 

been used, that is, a rectilinear trajectory (Fig. 4). If the 

results of the evolved set of receptive fields, obtained 

with this simplified problem, are suitable and consistent, 

it will be possible to extrapolate the followed 

methodology to an extension of the problem over 

different trajectories. 

At this point, it is important to define specific metrics 

to evaluate how good a solution is. The Metrical 

Discrimination Analysis plays a fundamental role in the 
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interpretation of the results (in terms of spike 

generation) and therefore, the evaluation of the obtained 

solutions. We have included a subsection with the 

Metrical Discrimination Analysis within the Results 

section to make the reading more understandable.  

3.1. Metrical analysis 

In order to abstract the strategy behind the evolved 

values of the receptive fields, we work in a scenario in 

which Dvr (ri, rj) is linear. In this case, if Dvr (ri, rj) were 

linear, the way in which spikes would be distributed to 

maximize the distance between each other should be 

equidistant. An optimal distribution under linear 

assumption of the “cost” function Dvr in the mossy fiber 

number 1 of the Fig. 6.A. would be a single spike in 

each time window (0.04s) with a relative separation of 

0.0016 second (time window/number of windows) from 

the previous time window spike time. The optimal 

relative distance between spikes in mossy fiber 1 would 

be 0.0016s. This process should be repeated trough the 

other mossy fibers obtaining a value of 0.0016 · number 

of mossy fibers (in our case 0.0016·10). Translating this 

value into van Rossum distance (tc=TimeWindow); the 

obtained intra-stimulus-value is Dvr (s0, s0.0016) = 0.0392 · 

number of mossy fibers. As it was previously 

established, this result would correspond to a linear cost 

function, but Dvr is essentially an exponential cost 

function, which means that the obtained result cannot be 

used as an accurate optimum but, at least, it can be used 

as a non-feasible upper bound for the fitness value the 

evolutionary algorithm could achieve.  

The trajectory shown in Fig. 4.A is used as the only 

input that feeds the evolvable receptive fields. The 

evolutionary algorithm, after 1500 epochs/generations of 

evolution using a population of 100 individuals, obtains 

a feasible near-optimal distribution (Fig. 6.A.). As it is 

shown, receptive fields which are placed near range 

extremes [rmax-rmin] have a wider tail in comparison to 

equally distributed receptive fields (general solution) in 

which receptive fields around range extremes are under-

utilized. The evolutionary algorithm optimizes the width 

of the receptive field at the extremes with two purposes; 

 

Fig. 6. Ten Evolved Receptive Fields vs. Ten Equally distributed Receptive Fields. The trajectory represented in Fig. 4.A is used as 

an input of the evolvable receptive fields whose final configuration is driven by the genetic algorithm (GA). A) Evolved receptive 

fields generate a population coding that ensures a maximal fitness of Eq. (12). (Fitness 0.0434 instead of 0.0 in the equidistant 

solution). A none zero Dvr means that we have a set of spikes that represent the coding of the executed trajectory in unambiguous way 

(each time window has its own unique spike train representation that implies that any spike train can be distinguished from any 

other). The higher the fitness is, the more separated representation we have (a spike train is distanced from any other spike train of the 

whole set as much as possible). This involves that we can distinguish a spike train from any other sooner and more robustly in the 

presence of noise. 
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to cover a wider area and to provide a spike contribution 

in a more extended range. The evolutionary algorithm 

also distributes central receptive fields in an equally 

distributed way but with different widths; equally 

distributed central fields ensure proper range coverage in 

a rectilinear trajectory, different widths make distances 

between different stimuli not linearly related with the 

estimation being encoded.  

3.1.1. Metrical discrimination analysis 

In order to validate the previously presented EA 

optimization process, a metrical analysis is needed to 

have a proper tool for discerning a good solution from a 

bad one.  

A metrical discrimination analysis allows us to 

numerically measure the main features of a given 

solution. As was established in Section 2.4, the desirable 

objective to achieve, broadly speaking is to generate a 

spike population set over time that represents the current 

sensorial state in an unambiguous way. That is, each 

sensorial state (trajectory state) should have a sole spike 

train representation which differentiates it from others. 

Consequently, it is necessary to prove that the evolved 

solution presents this discrimination feature between 

spike trains. Numerically, the EA maximizes the fitness 

function to enhance inter-stimulus distance. As a result, 

a given number representing this fitness is obtained, but, 

how does this inter-stimulus distance behave over time? 

How long does the discrimination between spike trains 

take? How can we evaluate that we have obtained an 

unambiguous spike train representation? 

The metrical discrimination analysis of Eq. (13) 

gives answer to these questions. 

[ ]
( ) ( )
( ) ( ) .nStep,wnTimeWindonStep,1wnTimeWindo

1,1i1,1

j,i

j,imin|max
−

+
Φ (13) 

Where j and i are the sub-indexes that indicate the 

pair of selected spike trains to calculate the van Rossum 

distance Dvr (ri, rj). nStep is the integration step number 

within a time window. For instance, a time window of 

40ms, assuming an integration step of 1ms, has 40 steps, 

i.e. nStep runs from 1 to 40. Finally, nTimeWindow is 

the index within the number of time windows into which 

a certain trajectory can be divided. For instance, a 1s 

trajectory can be divided in 25 time windows of 40ms 

each (thus, nTimeWindow runs from 1 to 25). As an 

example, ri=(1,1) value corresponds to the set of spikes 

belonging to the first spike train of the first time window 

(0s to 0.04s) that are located in the first integration step 

(0s to 0.001s) (Fig. 7).  

Since the stimulus changes along the trajectory, we 

can measure the inter-stimulus-distance in each time 

window. The first spike train belonging to the first 0.04s 

time window is compared with the second spike train 

belonging to the second 0.04s time window. The first 

spike train is then compared consecutively with the third 

spike train, then with the fourth, and so on. After this, 

the second spike train is compared successively with the 

third, the fourth, the fifth spike train, and so on. And this 

is repeated for each spike train, thus making an 

exhaustive comparison process.  

As a result, a minimal-inter-stimulus-distance curve 

is obtained. As it is shown in Fig. 8.A, Eq. (13) is 

applied to the EA solution (Fig. 6.A). We can see the 

minimal-inter-stimulus-distance behavior. Considering a 

40ms time window, we can ensure that it takes 34ms 

(first non-zero value for minimal-inter-stimulus-

distance) to distinguish any two spike trains (i.e. the 

actual state –joint angle- in the trajectory) of the 

generated spike set when a rectilinear trajectory is 

performed and the state variables (joint angle in these 

experiments) are translated into spikes through the 

evolved receptive fields given by the EA. A non-zero 

value for minimal-inter-stimulus-distance means a 

 
Fig. 7. Metrical discrimination analysis. Van Rossum distance 

is calculated between two spike trains (ri, rj) of different time 

windows (i, j) along n integration Steps within their 

corresponding time windows. 
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perfect discrimination. The earlier this non-zero value is 

obtained, the sooner it is possible to distinguish a spike 

train from any other. That means that we can ensure a 

perfect discrimination between any two spike trains over 

any 40ms time window because discrimination actually 

takes time before 34 ms. 

We can also verify that the maximum minimal-inter-

stimulus-distance is 0.0434 and it is achieved around 

40ms. This maximum value represents an estimate of 

how easy the discrimination between different stimuli 

becomes in different time windows (sensory states). 

To establish a comparison, this solution has been 

compared against other four solutions; an equally 

distributed receptive field solution (Fig. 8.B), two 

different equally distributed receptive field solutions 

with a better coverage at both ends of the range (Fig. 8.C 

and 8.D), and finally, an equally distributed receptive 

field solution with a decreasing coverage of the range 

from the ends of the range to the center. The second 

solution is a hand-calibrated solution; the third and 

fourth solutions try to emulate the behavior of the 

solution obtained by the EA. Receptive fields placed 

near both ends of the range are modified in order to 

ensure a better response to initial and final trajectory 

segments and the fifth solution not only tries to mimic 

the behavior of the EA solution at both ends of the range 

and also the behavior at central range positions, the 

receptive field width is modified from the range of 

extreme positions to the center position; the higher the 

distance of the receptive field center from the range 

center value, the wider receptive field is used. Different 

widths covering center range values ensure quite 

different responses to slightly different entries.   

As is shown in Fig. 8.A, in order to distinguish any 

two spike trains (microstates) of the generated set, it 

takes over 0.034s. A maximum of 0.434 (0.0434 · 

numMossyFibers) in the minimal-intra-stimulus-

distance is achieved (this value is consistent with the 

result obtained by the EA solution). Fig. 8.B shows a 

constant zero minimal-inter-spike-distance; equally, 

distributed receptive fields are not able to properly 

discriminate two spike trains of the generated spike set.  

On the other hand, although solutions of Fig. 8.C and 

Fig. 8.D really do a discrimination between spike trains 

(minimal-inter-stimulus-distance does not remain 

constantly zero) even sooner than the evolved solution 

(Fig. 8.D at 0.03s), neither of them achieves a maximum 

value of the minimal-inter-stimulus-distance near 0.434. 

The obtained maximum values are around 50% lower, so 

a better coverage of the whole range is implemented by 

the evolved solution.  

Finally, the last solution (Fig. 8.E) shows the same 

problem as the previous one, whereas a discrimination is 

possible even sooner than the evolved solution and the 

 

Fig. 8. Inter-stimulus distribution function for different receptive fields illustrates the discrimination capability of the system (a 10 

scale factor has been used to better plot the minimal-inter-stimulus-distance in the left panels). A) Evolved receptive fields. B) Equally 

distributed receptive fields. C) and D) Equally distributed receptive fields with a better coverage at both ends of the range. E) Equally 

distributed receptive fields with a decreasing coverage of the range from the ends to the center. 
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maximal-inter-stimulus-distance is better than Fig. 8.C 

and Fig. 8.D  (blue dashed curve), the maximum value 

of the minimal-inter-stimulus-distance is 66% less than 

the evolved solution. The evolved solution still 

represents a better way to cover the whole range of joint 

angles; the evolved solution not only ensures a perfect 

discrimination between spike stimuli but also ensures a 

maximal distance between their spike representations 

(Fig. 9). 

3.2. Analysis of evolved receptive fields in 
multiple trajectories 

Once the proposed methodology has been shown to 

succeed in a single-trajectory scenario, now the EA 

based optimization methodology is generalized to 

different trajectories. All the trajectories illustrated in 

Fig. 1 are used. 

In this scenario, the solutions will not be easily 

compared to manually handcrafted ones capturing the 

essence of the evolved solutions. The EA has been set to 

manage up to 30 possible receptive fields to be 

conjointly evolved. After the EA evolves a population of 

100 individuals over 2000 epochs, a final evolved 

solution is obtained as is shown in Fig. 10. Fig. 10.C 

shows the resulting receptive fields after the 

optimization process.  

We can see that the EA has concentrated the 

receptive field distribution in the [2/3rmax-2/3rmin] range. 

In this range region, the majority of the trajectories have 

sharp changes in their values; having a pretty 

concentrate centroid distribution right in [2/3rmax-2/3rmin] 

values of the range ensures a proper population of 

sensitized neurons (their base current forces neurons to 

be closer to their firing state) to fast changes in the input 

value. That is, fast changes in trajectory values involve 

very different generated spike trains, which is what we 

are looking for in this area. 

On the other hand, at the end of the range values, the 

EA has increased the width of the receptive fields 

providing a sparse distribution of them. Placing those 

wide receptive fields at the ends of the range is a way to 

distinguish the extreme areas in the spiking code. This 

involves that, at least, immediately, one neuron is firing 

in this area, being accompanied by the rest of firing 

neurons with certain delays no longer than 40ms (time 

windows) due to the width of the central receptive fields. 

Central receptive fields are wide enough to be sensitive 

 

Fig. 9. Minimal-inter-stimulus-distances (Dvr) achieved at time 

0.04s by different by different receptive field distribution 

solutions. Cases A, B, C, D, and E corresponding to the 

respective A, B, C, D, and E solutions illustrated in Fig. 8. 

 

Fig. 10. Evolved receptive field solution. A)  The EA uses the multiple trajectory benchmark to cover the defined workspace [rmax–

rmin]. Through evolution, the EA obtains a receptive field distribution that ensures discrimination between any spike-train mossy fiber 

produces (Fig. 2). B) Fitness evolution. Fitness curve converges properly after 1000 epochs. C) Final evolved distribution of the 

receptive fields.   
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to input values belonging to both ends of the range areas. 

3.2.1. Metrical discrimination analysis 

The metrical discrimination analysis extended to the 

multiple trajectories benchmark is given by Eq. (14).    

[ ]
( ) ( )
( ) ( )∑ −

+

n

1

j,i

j,imin|max .
n

1
nStep,wnTimeWindonStep,1wnTimeWindo

1,1i1,1
Φ (14) 

Where j and i are the sub-indexes that indicate the 

pair of selected spike trains to calculate the van Rossum 

distance Dvr (ri, rj). As previously described, nStep is the 

integration step number within a time window. 

nTimeWindow is an index within the number of time 

windows in which a certain trajectory can be divided 

into, and finally, n is the number of the trajectories of the 

benchmark. This equation is computed once in every 

trajectory obtaining a set of curves (a curve per 

trajectory). Each curve represents the behavior of the 

minimal-inter-stimulus-distance over each 0.04ms time 

window along the trajectory (using the receptive field 

solution given by the EA). As it was done in Section 3.1, 

the spike train set generated by a trajectory is computed 

according to Eq. (13). As a result, a minimal-inter-

stimulus-distance curve is obtained per trajectory. 

A final mean curve is calculated using this set of 

minimal-inter-stimulus-distance curves applying Eq. 

(14). As it is shown in Fig. 11, the evolved solution has 

been compared against a designed solution which 

consists of equally distributed receptive fields (other 

equally distributed solutions with different RF widths 

were tested but these experiments did not provide any 

new further information) and also, to a solution 

manually implemented which tries to emulate the EA 

solution. This illustrates how the EA solution itself can 

be used, or how it is also possible to try to emulate it 

(after interpreting it) towards designing efficient hand-

crafted solutions based on the EA guidance. 

Fig. 11.A shows the evolved solution and its 

performance. The discrimination condition between any 

pair of spike trains from the generated spike set using 

evolved receptive fields is possible after 0.014s in 

average with a maximum at the minimal-inter-stimulus-

distance of Dvr=0.0476. In contrast, the equally 

distributed receptive field standard solution presents a 

maximum value at minimal-inter-stimulus-distance of 

Dvr=0.00138. The discrimination between any pair of 

spike trains is possible after 0.032s on average. These 

values are clearly improved by the evolved solution. 

Finally, equally distributed receptive fields with a better 

 

Fig. 11. Inter-stimulus distribution obtained by the EA using the whole set of benchmark trajectories. A) Evolved receptive fields. B) 

Equally distributed receptive fields. C) Equally distributed receptive fields with a better coverage at both ends and in interval [2/3rmax-

2/3rmin] of the range. 
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coverage at both ends and in interval [2/3rmax -2/3rmin] of 

the range are able to discriminate any pair of spike trains 

from the generated spike set after 0.018s on average. 

The maximum value of the minimal-inter-stimulus-

distance at each time window is Dvr =0.0356. This 

maximum value of the minimal-inter-stimulus-distance 

is larger in the evolved solution than in the others; 

therefore, the discrimination process is not only 

executed sooner, but also with higher inter-stimulus-

distance values (which represent a larger margin that is 

useful in the case of noise in the sensory signal 

estimation). The EA solution not only ensures an earlier 

discrimination between spike trains, but also increases 

the distance between any pair of spike trains.   

4. Conclusions 

A methodology for efficiently representing incoming 

encoder signals from different links in terms of spikes in 

a plausible robot scenario is presented. Several 

approaches in controlling robots with cerebellum-like 

networks have been proposed in the literature
26-29 

(all of 

them keeping classical control theory in mind). Little 

attention has been given to efficient sensory 

representation in these approaches. To that aim, an 

evolutionary algorithm as an optimization engine has 

been proposed in this contribution. In this way, a goal 

function that captures how sensory information can be 

efficiently represented in terms of spike trains was 

defined, maximizing the minimal-inter-stimulus-distance 

when performing movements (benchmark trajectories). 

In the framework of experiments with cerebellar based 

robot control
1-3,13,72,73

 or other bio-inspired experiments, 
74,75

 the presented contribution will allow at initial stages 

of the adaptation mechanisms of the cerebellum to 

distinguish more accurately specific instants along the 

trajectories in which potential corrections or actions 

need to be performed. 

The receptive fields in our sensory input layer have 

been evolved. We focus on the way in which these 

receptive fields have to be distributed both to encode 

each sensorial state in an unambiguous way and to 

enhance information transfer (in terms of entropy) 

between mechanoreceptor signals and their spike 

representations. The receptive field configuration task is 

carried out by the aforementioned Evolutionary 

Algorithm. Such an algorithm evolves receptive fields 

along the robot-link work space according to a goal 

function that takes into account the metrical properties 

of the spike train space.  

Beyond this specific contribution, this work also 

presents a general methodology of using EAs for 

optimization purposes when addressing reverse 

engineering of biological systems. In this scenario, it is 

important to implement a goal function that captures the 

essence of attributed properties of the system which is 

being optimized. In our case, the goal function is the 

optimization of sensory representation in terms of spikes 

with inter-spike discrimination capability along 

movement trajectories. This required the definition of a 

metric to allow the evaluation of the different candidate 

solutions, in order to derive a final fitness function for 

the EA. The definition of a fitness function that allows 

convergence through an EA is not straight forward; it 

required a preliminary experimental stage in which 

preliminary simulations where done with a single 

trajectory in which the results (and obtained solutions in 

terms of receptive field configuration) were easy to 

interpret. The searching space in this kind of problems 

and the computational cost of spike train distances may 

require the parallelization of the EA, as it has been done 

in this work. 

This technique will be included into robotic 

experiments with cerebellar like modules as corrective 

engines to evaluate how an optimal sensory 

representation facilitates an effective adaptation at the 

cerebellum. Thus, it will be applied to object 

manipulation experiments with an adaptive cerebellar-

like module. In previous experimental studies
76-78

, the 

translation from analog robotic sensory signals to spike 

trains has been done manually (through a manually 

designed receptive filter configuration) to facilitate an 

easy discrimination when performing different 

trajectories. 

We will also apply the presented technique to tactile 

sensors
79-82

 to maximize information transmission as 

discrimination between microstates in the framework of 

sensing tasks.  

We will also study the possibility of introducing an 

STDP
83

 law that increases the performance of the 

evolved system in such sensing task frameworks. 

Furthermore, we will apply other parallel optimization 

schemes
84,85

 in order to scale up the complexity of the 

representations that can be studied.   
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